npj Quantum Information最新文献

筛选
英文 中文
Quantum networks with coherent routing of information through multiple nodes
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-12-20 DOI: 10.1038/s41534-024-00919-5
Hlér Kristjánsson, Yan Zhong, Anthony Munson, Giulio Chiribella
{"title":"Quantum networks with coherent routing of information through multiple nodes","authors":"Hlér Kristjánsson, Yan Zhong, Anthony Munson, Giulio Chiribella","doi":"10.1038/s41534-024-00919-5","DOIUrl":"https://doi.org/10.1038/s41534-024-00919-5","url":null,"abstract":"<p>Large-scale communication networks, such as the Internet, rely on routing packets of data through multiple intermediate nodes to transmit information from a sender to a receiver. In this paper, we develop a model of a quantum communication network that routes information simultaneously along multiple paths passing through intermediate stations. We demonstrate that a quantum routing approach can in principle extend the distance over which information can be transmitted reliably. Surprisingly, the benefit of quantum routing also applies to the transmission of classical information: even if the transmitted data is purely classical, delocalising it on multiple routes can enhance the achievable transmission distance. Our findings highlight the potential of a future quantum internet not only for achieving secure quantum communication and distributed quantum computing but also for extending the range of classical data transmission.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"53 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum simulation of realistic materials in first quantization using non-local pseudopotentials
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-12-19 DOI: 10.1038/s41534-024-00896-9
Dominic W. Berry, Nicholas C. Rubin, Ahmed O. Elnabawy, Gabriele Ahlers, A. Eugene DePrince, Joonho Lee, Christian Gogolin, Ryan Babbush
{"title":"Quantum simulation of realistic materials in first quantization using non-local pseudopotentials","authors":"Dominic W. Berry, Nicholas C. Rubin, Ahmed O. Elnabawy, Gabriele Ahlers, A. Eugene DePrince, Joonho Lee, Christian Gogolin, Ryan Babbush","doi":"10.1038/s41534-024-00896-9","DOIUrl":"https://doi.org/10.1038/s41534-024-00896-9","url":null,"abstract":"<p>This paper improves and demonstrates the usefulness of the first quantized plane-wave algorithms for the quantum simulation of electronic structure. We describe our quantum algorithm for first quantized simulation that accurately includes pseudopotentials. We focus on the Goedecker-Tetter-Hutter pseudopotential, and despite its complicated form, we block encode the associated operator without significantly increasing the overall cost of quantum simulation. This is surprising since simulating the nuclear potential is much simpler without pseudopotentials, yet is still the bottleneck. We also generalize prior methods to enable the simulation of materials with non-cubic unit cells, which requires nontrivial modifications. Finally, we combine these techniques to estimate block-encoding costs for commercially relevant instances of heterogeneous catalysis (e.g. carbon monoxide adsorption) and compare to the quantum resources needed to simulate materials in second quantization. We conclude that for computational cells with many particles, first quantization often requires meaningfully less spacetime volume.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"25 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous discovery of quantum error correction codes and encoders with a noise-aware reinforcement learning agent
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-12-03 DOI: 10.1038/s41534-024-00920-y
Jan Olle, Remmy Zen, Matteo Puviani, Florian Marquardt
{"title":"Simultaneous discovery of quantum error correction codes and encoders with a noise-aware reinforcement learning agent","authors":"Jan Olle, Remmy Zen, Matteo Puviani, Florian Marquardt","doi":"10.1038/s41534-024-00920-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00920-y","url":null,"abstract":"<p>In the ongoing race towards experimental implementations of quantum error correction (QEC), finding ways to automatically discover codes and encoding strategies tailored to the qubit hardware platform is emerging as a critical problem. Reinforcement learning (RL) has been identified as a promising approach, but so far it has been severely restricted in terms of scalability. In this work, we significantly expand the power of RL approaches to QEC code discovery. Explicitly, we train an RL agent that automatically discovers both QEC codes and their encoding circuits for a given gate set, qubit connectivity and error model, from scratch. This is enabled by a reward based on the Knill-Laflamme conditions and a vectorized Clifford simulator, showing its effectiveness with up to 25 physical qubits and distance 5 codes, while presenting a roadmap to scale this approach to 100 qubits and distance 10 codes in the near future. We also introduce the concept of a noise-aware meta-agent, which learns to produce encoding strategies simultaneously for a range of noise models, thus leveraging transfer of insights between different situations. Our approach opens the door towards hardware-adapted accelerated discovery of QEC approaches across the full spectrum of quantum hardware platforms of interest.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"46 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unleashed from constrained optimization: quantum computing for quantum chemistry employing generator coordinate inspired method
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-12-03 DOI: 10.1038/s41534-024-00916-8
Muqing Zheng, Bo Peng, Ang Li, Xiu Yang, Karol Kowalski
{"title":"Unleashed from constrained optimization: quantum computing for quantum chemistry employing generator coordinate inspired method","authors":"Muqing Zheng, Bo Peng, Ang Li, Xiu Yang, Karol Kowalski","doi":"10.1038/s41534-024-00916-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00916-8","url":null,"abstract":"<p>Hybrid quantum-classical approaches offer potential solutions to quantum chemistry problems, yet they often manifest as constrained optimization problems. Here, we explore the interconnection between constrained optimization and generalized eigenvalue problems through the Unitary Coupled Cluster (UCC) excitation generators. Inspired by the generator coordinate method, we employ these UCC excitation generators to construct non-orthogonal, overcomplete many-body bases, projecting the system Hamiltonian into an effective Hamiltonian, which bypasses issues such as barren plateaus that heuristic numerical minimizers often encountered in standard variational quantum eigensolver (VQE). Diverging from conventional quantum subspace expansion methods, we introduce an adaptive scheme that robustly constructs the many-body basis sets from a pool of the UCC excitation generators. This scheme supports the development of a hierarchical ADAPT quantum-classical strategy, enabling a balanced interplay between subspace expansion and ansatz optimization to address complex, strongly correlated quantum chemical systems cost-effectively, setting the stage for more advanced quantum simulations in chemistry.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"116 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quantum leaky integrate-and-fire spiking neuron and network
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-12-02 DOI: 10.1038/s41534-024-00921-x
Dean Brand, Francesco Petruccione
{"title":"A quantum leaky integrate-and-fire spiking neuron and network","authors":"Dean Brand, Francesco Petruccione","doi":"10.1038/s41534-024-00921-x","DOIUrl":"https://doi.org/10.1038/s41534-024-00921-x","url":null,"abstract":"<p>Quantum machine learning is in a period of rapid development and discovery, however it still lacks the resources and diversity of computational models of its classical complement. With the growing difficulties of classical models requiring extreme hardware and power solutions, and quantum models being limited by noisy intermediate-scale quantum (NISQ) hardware, there is an emerging opportunity to solve both problems together. Here we introduce a new software model for quantum neuromorphic computing — a quantum leaky integrate-and-fire (QLIF) neuron, implemented as a compact high-fidelity quantum circuit, requiring only 2 rotation gates and no CNOT gates. We use these neurons as building blocks in the construction of a quantum spiking neural network (QSNN), and a quantum spiking convolutional neural network (QSCNN), as the first of their kind. We apply these models to the MNIST, Fashion-MNIST, and KMNIST datasets for a full comparison with other classical and quantum models. We find that the proposed models perform competitively, with comparative accuracy, with efficient scaling and fast computation in classical simulation as well as on quantum devices.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"13 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can quantum computers do nothing? 量子计算机可以什么都不做吗?
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-26 DOI: 10.1038/s41534-024-00918-6
Alexander Nico-Katz, Nathan Keenan, John Goold
{"title":"Can quantum computers do nothing?","authors":"Alexander Nico-Katz, Nathan Keenan, John Goold","doi":"10.1038/s41534-024-00918-6","DOIUrl":"https://doi.org/10.1038/s41534-024-00918-6","url":null,"abstract":"<p>Quantum computing platforms are subject to contradictory engineering requirements: qubits must be protected from mutual interactions when idling (‘doing nothing’), and strongly interacting when in operation. If idling qubits are not sufficiently protected, information ‘leaks’ into neighbouring qubits, becoming ultimately inaccessible. Candidate solutions to this dilemma include many-body localization, dynamical decoupling, and active error correction. However, no protocol exists to quantify this effect in a similar way to e.g. SPAM errors. We develop a scalable, device non-specific, protocol for quantifying idle information loss by exploiting tools from quantum information theory. We implement this protocol in over 3500 experiments carried out across 4 months (Dec 2023–Mar 2024) on IBM’s entire Falcon 5.11 processor series. After accounting for other error sources, we detect information loss to high degrees of statistical significance. This work thus provides a firm quantitative foundation from which the protection-operation dilemma can be investigated and ultimately resolved.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"188 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing coherent errors using matrix-element amplification 利用矩阵元素放大技术确定相干误差的特征
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-22 DOI: 10.1038/s41534-024-00917-7
Jonathan A. Gross, Élie Genois, Dripto M. Debroy, Yaxing Zhang, Wojciech Mruczkiewicz, Ze-Pei Cian, Zhang Jiang
{"title":"Characterizing coherent errors using matrix-element amplification","authors":"Jonathan A. Gross, Élie Genois, Dripto M. Debroy, Yaxing Zhang, Wojciech Mruczkiewicz, Ze-Pei Cian, Zhang Jiang","doi":"10.1038/s41534-024-00917-7","DOIUrl":"https://doi.org/10.1038/s41534-024-00917-7","url":null,"abstract":"<p>Repeating a gate sequence multiple times amplifies systematic errors coherently, making it a useful tool for characterizing quantum gates. However, the precision of such an approach is limited by low-frequency noise, while its efficiency is hindered by time-consuming scans required to match up the phases of the off-diagonal matrix elements being amplified. Here, we overcome both challenges by interleaving the gate of interest with dynamical decoupling sequences in a protocol we call Matrix-Element Amplification using Dynamical Decoupling (MEADD). Using frequency-tunable superconducting qubits from a Google Sycamore quantum processor, we experimentally demonstrate that MEADD surpasses the accuracy and precision of existing characterization protocols for estimating systematic errors in single- and two-qubit gates. We use MEADD to estimate coherent parameters of CZ gates with 5 to 10 times the precision of existing methods and to characterize previously undetectable coherent crosstalk, reaching a precision below one milliradian.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"35 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardware-tailored diagonalization circuits 硬件定制对角化电路
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-21 DOI: 10.1038/s41534-024-00901-1
Daniel Miller, Laurin E. Fischer, Kyano Levi, Eric J. Kuehnke, Igor O. Sokolov, Panagiotis Kl. Barkoutsos, Jens Eisert, Ivano Tavernelli
{"title":"Hardware-tailored diagonalization circuits","authors":"Daniel Miller, Laurin E. Fischer, Kyano Levi, Eric J. Kuehnke, Igor O. Sokolov, Panagiotis Kl. Barkoutsos, Jens Eisert, Ivano Tavernelli","doi":"10.1038/s41534-024-00901-1","DOIUrl":"https://doi.org/10.1038/s41534-024-00901-1","url":null,"abstract":"<p>A central building block of many quantum algorithms is the diagonalization of Pauli operators. Although it is always possible to construct a quantum circuit that simultaneously diagonalizes a given set of commuting Pauli operators, only resource-efficient circuits can be executed reliably on near-term quantum computers. Generic diagonalization circuits, in contrast, often lead to an unaffordable SWAP gate overhead on quantum devices with limited hardware connectivity. A common alternative is to exclude two-qubit gates altogether. However, this comes at the severe cost of restricting the class of diagonalizable sets of Pauli operators to tensor product bases (TPBs). In this article, we introduce a theoretical framework for constructing hardware-tailored (HT) diagonalization circuits. Our framework establishes a systematic and highly flexible procedure for tailoring diagonalization circuits with ultra-low gate counts. We highlight promising use cases of our framework and – as a proof-of-principle application – we devise an efficient algorithm for grouping the Pauli operators of a given Hamiltonian into jointly-HT-diagonalizable sets. For several classes of Hamiltonians, we observe that our approach requires fewer measurements than conventional TPB approaches. Finally, we experimentally demonstrate that HT circuits can improve the efficiency of estimating expectation values with cloud-based quantum computers.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"231 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Many-body entanglement via ‘which-path’ information 通过 "路径 "信息实现多体纠缠
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-21 DOI: 10.1038/s41534-024-00899-6
Ron Ruimy, Offek Tziperman, Alexey Gorlach, Klaus Mølmer, Ido Kaminer
{"title":"Many-body entanglement via ‘which-path’ information","authors":"Ron Ruimy, Offek Tziperman, Alexey Gorlach, Klaus Mølmer, Ido Kaminer","doi":"10.1038/s41534-024-00899-6","DOIUrl":"https://doi.org/10.1038/s41534-024-00899-6","url":null,"abstract":"We propose a multi-particle ‘which-path’ gedanken experiment with a quantum detector. Contrary to conventional ‘which-path’ experiments, the detector maintains its quantum state during interactions with the particles. We show how such interactions can create an interference pattern that vanishes on average, as in conventional ‘which-path’ schemes, but contains hidden many-body quantum correlations. Measuring the state of the quantum detector projects the joint-particle wavefunction into highly entangled states, such as GHZ’s. Conversely, measuring the particles projects the detector wavefunction into desired states, such as Schrodinger-cat or GKP states for a harmonic-oscillator detector, e.g., a photonic cavity. Our work thus opens a new path to the creation and exploration of many-body quantum correlations in systems not often associated with these phenomena, such as atoms in waveguide QED and free electrons in transmission electron microscopy.","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"57 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local testability of distance-balanced quantum codes 距离平衡量子密码的局部可测试性
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-20 DOI: 10.1038/s41534-024-00908-8
Adam Wills, Ting-Chun Lin, Min-Hsiu Hsieh
{"title":"Local testability of distance-balanced quantum codes","authors":"Adam Wills, Ting-Chun Lin, Min-Hsiu Hsieh","doi":"10.1038/s41534-024-00908-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00908-8","url":null,"abstract":"<p>In this paper, we prove a lower bound on the soundness of quantum locally testable codes under the distance balancing construction of Evra et al. Our technical contribution is that the soundness of the quantum code after this procedure is at least its soundness before the procedure divided by the length of the classical code used to perform distance balancing. This allows us to use any classical code when distance balancing, where previously only the repetition code had been considered for these codes. By using a good classical low-density parity check (LDPC) code, we are able to grow the dimension of the hypersphere product codes and the hemicubic codes while maintaining their distance and locality, but at the expense of soundness. From this, and also by distance balancing a chain complex of Cross et al., we obtain quantum locally testable codes of new parameters.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"77 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信