npj Quantum Information最新文献

筛选
英文 中文
Local testability of distance-balanced quantum codes 距离平衡量子密码的局部可测试性
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-20 DOI: 10.1038/s41534-024-00908-8
Adam Wills, Ting-Chun Lin, Min-Hsiu Hsieh
{"title":"Local testability of distance-balanced quantum codes","authors":"Adam Wills, Ting-Chun Lin, Min-Hsiu Hsieh","doi":"10.1038/s41534-024-00908-8","DOIUrl":"https://doi.org/10.1038/s41534-024-00908-8","url":null,"abstract":"<p>In this paper, we prove a lower bound on the soundness of quantum locally testable codes under the distance balancing construction of Evra et al. Our technical contribution is that the soundness of the quantum code after this procedure is at least its soundness before the procedure divided by the length of the classical code used to perform distance balancing. This allows us to use any classical code when distance balancing, where previously only the repetition code had been considered for these codes. By using a good classical low-density parity check (LDPC) code, we are able to grow the dimension of the hypersphere product codes and the hemicubic codes while maintaining their distance and locality, but at the expense of soundness. From this, and also by distance balancing a chain complex of Cross et al., we obtain quantum locally testable codes of new parameters.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"77 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon 硅基外延二氧化铈中 Er 自旋量子比特的光学和自旋相干性
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-20 DOI: 10.1038/s41534-024-00903-z
Jiefei Zhang, Gregory D. Grant, Ignas Masiulionis, Michael T. Solomon, Jonathan C. Marcks, Jasleen K. Bindra, Jens Niklas, Alan M. Dibos, Oleg G. Poluektov, F. Joseph Heremans, Supratik Guha, David D. Awschalom
{"title":"Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon","authors":"Jiefei Zhang, Gregory D. Grant, Ignas Masiulionis, Michael T. Solomon, Jonathan C. Marcks, Jasleen K. Bindra, Jens Niklas, Alan M. Dibos, Oleg G. Poluektov, F. Joseph Heremans, Supratik Guha, David D. Awschalom","doi":"10.1038/s41534-024-00903-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00903-z","url":null,"abstract":"<p>Robust spin-photon interfaces with optical transitions in the telecommunication band are essential for quantum networking technologies. Erbium (Er) ions are the ideal candidate with environmentally protected transitions in telecom-C band. Finding the right technologically compatible host material to enable long-lived spins remains a major hurdle. We introduce a new platform based on Er ions in cerium dioxide (CeO<sub>2</sub>) as a nearly-zero nuclear spin environment (0.04%) epitaxially grown on silicon, offering silicon compatibility for opto-electrical devices. Our studies focus on Er<sup>3+</sup> ions and show a narrow homogeneous linewidth of 440 kHz with an optical coherence time of 0.72 μs at 3.6 K. The reduced nuclear spin noise enables a slow spin-lattice relaxation with a spin relaxation time up to 2.5 ms and an electron spin coherence time of 0.66 μs (in the isolated ion limit) at 3.6 K. These findings highlight the potential of Er<sup>3+</sup>:CeO<sub>2</sub> platform for quantum networks applications.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"11 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-end variational quantum sensing 端到端变异量子传感
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-19 DOI: 10.1038/s41534-024-00914-w
Benjamin MacLellan, Piotr Roztocki, Stefanie Czischek, Roger G. Melko
{"title":"End-to-end variational quantum sensing","authors":"Benjamin MacLellan, Piotr Roztocki, Stefanie Czischek, Roger G. Melko","doi":"10.1038/s41534-024-00914-w","DOIUrl":"https://doi.org/10.1038/s41534-024-00914-w","url":null,"abstract":"<p>Harnessing quantum correlations can enable sensing beyond classical precision limits, with the realization of such sensors poised for transformative impacts across science and engineering. Real devices, however, face the accumulated impacts of noise and architecture constraints, making the design and success of practical quantum sensors challenging. Numerical and theoretical frameworks to optimize and analyze sensing protocols in their entirety are thus crucial for translating quantum advantage into widespread practice. Here, we present an end-to-end variational framework for quantum sensing protocols, where parameterized quantum circuits and neural networks form trainable, adaptive models for quantum sensor dynamics and estimation, respectively. The framework is general and can be adapted towards arbitrary qubit architectures, as we demonstrate with experimentally-relevant ansätze for trapped-ion and photonic systems, and enables to directly quantify the impacts that noise and finite data sampling. End-to-end variational approaches can thus underpin powerful design and analysis tools for practical quantum sensing advantage.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"14 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guarantees on the structure of experimental quantum networks 实验量子网络结构的保证
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-11-14 DOI: 10.1038/s41534-024-00911-z
Andrés Ulibarrena, Jonathan W. Webb, Alexander Pickston, Joseph Ho, Alessandro Fedrizzi, Alejandro Pozas-Kerstjens
{"title":"Guarantees on the structure of experimental quantum networks","authors":"Andrés Ulibarrena, Jonathan W. Webb, Alexander Pickston, Joseph Ho, Alessandro Fedrizzi, Alejandro Pozas-Kerstjens","doi":"10.1038/s41534-024-00911-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00911-z","url":null,"abstract":"<p>Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing. As these networks grow in size, certification tools will be required to answer questions regarding their properties. In this work we demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network. We apply quantum inflation methods to data obtained in quantum group encryption experiments, guaranteeing the impossibility of producing the observed results in networks with fewer optical elements. Our results pave the way for scalable methods of obtaining device-independent guarantees on the network structure underlying multipartite quantum protocols.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"82 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hong-Ou-Mandel interference of single-photon-level pulses stored in independent room-temperature quantum memories 存储在独立室温量子存储器中的单光子级脉冲的弘欧-曼德尔干涉
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-01-15 DOI: 10.1038/s41534-024-00803-2
Sonali Gera, Chase Wallace, Mael Flament, Alessia Scriminich, Mehdi Namazi, Youngshin Kim, Steven Sagona-Stophel, Giuseppe Vallone, Paolo Villoresi, Eden Figueroa
{"title":"Hong-Ou-Mandel interference of single-photon-level pulses stored in independent room-temperature quantum memories","authors":"Sonali Gera, Chase Wallace, Mael Flament, Alessia Scriminich, Mehdi Namazi, Youngshin Kim, Steven Sagona-Stophel, Giuseppe Vallone, Paolo Villoresi, Eden Figueroa","doi":"10.1038/s41534-024-00803-2","DOIUrl":"https://doi.org/10.1038/s41534-024-00803-2","url":null,"abstract":"<p>Quantum repeater networks require independent absorptive quantum memories capable of storing and retrieving indistinguishable photons to perform high-repetition entanglement swapping operations. The ability to perform these coherent operations at room temperature is of prime importance for the realization of scalable quantum networks. We perform Hong-Ou-Mandel (HOM) interference between photonic polarization states and single-photon-level pulses stored and retrieved from two sets of independent room-temperature quantum memories. We show that the storage and retrieval of polarization states from quantum memories does not degrade the HOM visibility for few-photon-level polarization states in a dual-rail configuration. For single-photon-level pulses, we measure the HOM visibility with various levels of background in a single polarization, single-rail QM, and investigate its dependence on the signal-to-background ratio. We obtain an HOM visibility of 43%, compared to the 48% no-memory limit of our set-up. These results allow us to estimate a 33% visibility for polarization qubits under the same conditions. These demonstrations lay the groundwork for future applications using large-scale memory-assisted quantum networks.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"1 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139474172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental graybox quantum system identification and control 灰箱量子系统识别与控制实验
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-01-13 DOI: 10.1038/s41534-023-00795-5
Akram Youssry, Yang Yang, Robert J. Chapman, Ben Haylock, Francesco Lenzini, Mirko Lobino, Alberto Peruzzo
{"title":"Experimental graybox quantum system identification and control","authors":"Akram Youssry, Yang Yang, Robert J. Chapman, Ben Haylock, Francesco Lenzini, Mirko Lobino, Alberto Peruzzo","doi":"10.1038/s41534-023-00795-5","DOIUrl":"https://doi.org/10.1038/s41534-023-00795-5","url":null,"abstract":"<p>Understanding and controlling engineered quantum systems is key to developing practical quantum technology. However, given the current technological limitations, such as fabrication imperfections and environmental noise, this is not always possible. To address these issues, a great deal of theoretical and numerical methods for quantum system identification and control have been developed. These methods range from traditional curve fittings, which are limited by the accuracy of the model that describes the system, to machine learning (ML) methods, which provide efficient control solutions but no control beyond the output of the model, nor insights into the underlying physical process. Here we experimentally demonstrate a ‘graybox’ approach to construct a physical model of a quantum system and use it to design optimal control. We report superior performance over model fitting, while generating unitaries and Hamiltonians, which are quantities not available from the structure of standard supervised ML models. Our approach combines physics principles with high-accuracy ML and is effective with any problem where the required controlled quantities cannot be directly measured in experiments. This method naturally extends to time-dependent and open quantum systems, with applications in quantum noise spectroscopy and cancellation.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"1 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139435349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamiltonian phase error in resonantly driven CNOT gate above the fault-tolerant threshold 高于容错阈值的谐振驱动 CNOT 栅极的哈密顿相位误差
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-01-11 DOI: 10.1038/s41534-023-00802-9
Yi-Hsien Wu, Leon C. Camenzind, Akito Noiri, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Chien-Yuan Chang, Amir Sammak, Giordano Scappucci, Hsi-Sheng Goan, Seigo Tarucha
{"title":"Hamiltonian phase error in resonantly driven CNOT gate above the fault-tolerant threshold","authors":"Yi-Hsien Wu, Leon C. Camenzind, Akito Noiri, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Chien-Yuan Chang, Amir Sammak, Giordano Scappucci, Hsi-Sheng Goan, Seigo Tarucha","doi":"10.1038/s41534-023-00802-9","DOIUrl":"https://doi.org/10.1038/s41534-023-00802-9","url":null,"abstract":"<p>Because of their long coherence time and compatibility with industrial foundry processes, electron spin qubits are a promising platform for scalable quantum processors. A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates. Analyzing and mitigating gate errors are useful to improve gate fidelity. Here, we demonstrate a simple yet reliable calibration procedure for a high-fidelity controlled-rotation gate in an exchange-always-on Silicon quantum processor, allowing operation above the fault-tolerance threshold of quantum error correction. We find that the fidelity of our uncalibrated controlled-rotation gate is limited by coherent errors in the form of controlled phases and present a method to measure and correct these phase errors. We then verify the improvement in our gate fidelities by randomized benchmark and gate-set tomography protocols. Finally, we use our phase correction protocol to implement a virtual, high-fidelity, controlled-phase gate.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"97 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139431152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending loophole-free nonlocal correlations to arbitrarily large distances 将无漏洞非局部相关性扩展到任意大距离
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-01-11 DOI: 10.1038/s41534-023-00799-1
Anubhav Chaturvedi, Giuseppe Viola, Marcin Pawłowski
{"title":"Extending loophole-free nonlocal correlations to arbitrarily large distances","authors":"Anubhav Chaturvedi, Giuseppe Viola, Marcin Pawłowski","doi":"10.1038/s41534-023-00799-1","DOIUrl":"https://doi.org/10.1038/s41534-023-00799-1","url":null,"abstract":"<p>Quantum theory allows spatially separated observers to share nonlocal correlations, which enable them to accomplish classically inconceivable information processing and cryptographic feats. However, the distances over which nonlocal correlations can be realized remain severely limited due to their high fragility to noise and high threshold detection efficiencies. To enable loophole-free nonlocality across large distances, we introduce Bell experiments wherein the spatially separated parties randomly choose the location of their measurement devices. We demonstrate that when devices close to the source are perfect and witness extremal nonlocal correlations, such correlations can be extended to devices placed arbitrarily far from the source. To accommodate imperfections close to the source, we demonstrate an analytic trade-off: the higher the loophole-free nonlocality close to the source, the lower the threshold requirements away from the source. We utilize this trade-off and formulate numerical methods to estimate the critical requirements of individual measurement devices in such experiments.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"16 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139420064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classical shadows with Pauli-invariant unitary ensembles 具有保利不变单元集合的经典阴影
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-01-08 DOI: 10.1038/s41534-023-00801-w
Kaifeng Bu, Dax Enshan Koh, Roy J. Garcia, Arthur Jaffe
{"title":"Classical shadows with Pauli-invariant unitary ensembles","authors":"Kaifeng Bu, Dax Enshan Koh, Roy J. Garcia, Arthur Jaffe","doi":"10.1038/s41534-023-00801-w","DOIUrl":"https://doi.org/10.1038/s41534-023-00801-w","url":null,"abstract":"<p>Classical shadows provide a noise-resilient and sample-efficient method for learning quantum system properties, relying on a user-specified unitary ensemble. What is the weakest assumption on this ensemble that can still yield meaningful results? To address this, we focus on Pauli-invariant unitary ensembles—those invariant under multiplication by Pauli operators. For these ensembles, we present explicit formulas for the reconstruction map and sample complexity bounds and extend our results to the case when noise impacts the protocol implementation. Two applications are explored: one for locally scrambled unitary ensembles, where we present formulas for the reconstruction map and sample complexity bounds that circumvent the need to solve an exponential-sized linear system, and another for the classical shadows of quantum channels. Our results establish a unified framework for classical shadows with Pauli-invariant unitary ensembles, applicable to both noisy and noiseless scenarios for states and channels and primed for implementation on near-term quantum devices.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"46 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139400325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High frequency magnetometry with an ensemble of spin qubits in hexagonal boron nitride 利用六方氮化硼中的自旋量子位组进行高频磁测量
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-01-06 DOI: 10.1038/s41534-023-00796-4
Charlie J. Patrickson, Simon Baber, Blanka B. Gaál, Andrew J. Ramsay, Isaac J. Luxmoore
{"title":"High frequency magnetometry with an ensemble of spin qubits in hexagonal boron nitride","authors":"Charlie J. Patrickson, Simon Baber, Blanka B. Gaál, Andrew J. Ramsay, Isaac J. Luxmoore","doi":"10.1038/s41534-023-00796-4","DOIUrl":"https://doi.org/10.1038/s41534-023-00796-4","url":null,"abstract":"<p>Sensors based on spin qubits in 2D crystals offer the prospect of nanoscale proximities between sensor and source, which could provide access to otherwise inaccessible signals. For AC magnetometry, the sensitivity and frequency range are typically limited by the noise spectrum, which determines the qubit coherence time. We address this using phase modulated continuous concatenated dynamic decoupling, which extends the coherence time towards the <i>T</i><sub>1</sub> limit at room temperature and enables tuneable narrowband AC magnetometry. Using an ensemble of negatively charged boron vacancies in hexagonal boron nitride, we detect out-of-plane AC fields in the range of ~ 10 − 150 MHz, and in-plane fields within ± 150 MHz of the electron spin resonance. We measure an AC magnetic field sensitivity of <span>(sim 1,mu {{{rm{T}}}}/sqrt{{{{rm{Hz}}}}})</span> at ~ 2.5 GHz, for a sensor volume of ~ 0.1 μm<sup>3</sup>. This work establishes the viability of spin defects in 2D materials for high frequency magnetometry, with wide-ranging applications across science and technology.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"209 1 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139110404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信