深亚波长声子光子约束下的自旋光力学腔界面

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Hamza Raniwala, Pratyush Anand, Stefan Krastanov, Matt Eichenfield, Matthew Trusheim, Dirk R. Englund
{"title":"深亚波长声子光子约束下的自旋光力学腔界面","authors":"Hamza Raniwala, Pratyush Anand, Stefan Krastanov, Matt Eichenfield, Matthew Trusheim, Dirk R. Englund","doi":"10.1038/s41534-025-00999-x","DOIUrl":null,"url":null,"abstract":"<p>A central goal of quantum information science is transferring qubits between space, time, and modality. Spin-based systems in solids are promising quantum memories, but high-fidelity transfer of their quantum states to telecom optical fields remains challenging. Here, we introduce a phonon-mediated interface between spins in a diamond nanobeam optomechanical crystal and telecom optical fields by a simultaneous deep-subwavelength confinement of optical and acoustic fields with mode volumes <span>\\({V}_{{\\rm{mech}}}/{\\Lambda }_{{\\rm{p}}}^{3} \\sim 1{0}^{-5}\\)</span> and <i>V</i><sub>opt</sub>/<i>λ</i><sup>3</sup> ~ 10<sup>−3</sup>, respectively. This confinement boosts the spin-mechanical coupling rate of Group-IV silicon vacancy (SiV<sup>−</sup>) centers by an order of magnitude to ~ 32 MHz while retaining high acousto-optical couplings. The optical cavity couples to the spin irrespective of the emitter’s native excited states, avoiding spectral diffusion. Using Quantum Monte Carlo simulations, we estimate heralded entanglement fidelities exceeding 0.96 between two such interfaces. We anticipate broad utility beyond diamond emitter-telecom systems to most solid-state quantum memories.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"93 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-optomechanical cavity interfaces by deep subwavelength phonon-photon confinement\",\"authors\":\"Hamza Raniwala, Pratyush Anand, Stefan Krastanov, Matt Eichenfield, Matthew Trusheim, Dirk R. Englund\",\"doi\":\"10.1038/s41534-025-00999-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A central goal of quantum information science is transferring qubits between space, time, and modality. Spin-based systems in solids are promising quantum memories, but high-fidelity transfer of their quantum states to telecom optical fields remains challenging. Here, we introduce a phonon-mediated interface between spins in a diamond nanobeam optomechanical crystal and telecom optical fields by a simultaneous deep-subwavelength confinement of optical and acoustic fields with mode volumes <span>\\\\({V}_{{\\\\rm{mech}}}/{\\\\Lambda }_{{\\\\rm{p}}}^{3} \\\\sim 1{0}^{-5}\\\\)</span> and <i>V</i><sub>opt</sub>/<i>λ</i><sup>3</sup> ~ 10<sup>−3</sup>, respectively. This confinement boosts the spin-mechanical coupling rate of Group-IV silicon vacancy (SiV<sup>−</sup>) centers by an order of magnitude to ~ 32 MHz while retaining high acousto-optical couplings. The optical cavity couples to the spin irrespective of the emitter’s native excited states, avoiding spectral diffusion. Using Quantum Monte Carlo simulations, we estimate heralded entanglement fidelities exceeding 0.96 between two such interfaces. We anticipate broad utility beyond diamond emitter-telecom systems to most solid-state quantum memories.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-00999-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00999-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

量子信息科学的核心目标是在空间、时间和模态之间传递量子比特。固体中基于自旋的系统是很有前途的量子存储器,但是将它们的量子态高保真地转移到电信光场仍然是一个挑战。在这里,我们引入了声子介导的界面在金刚石纳米光机械晶体和电信光场之间的自旋通过同时深亚波长限制的光学和声场分别与模式体积\({V}_{{\rm{mech}}}/{\Lambda }_{{\rm{p}}}^{3} \sim 1{0}^{-5}\)和Vopt/λ3 10−3。这种约束将iv族硅空位(SiV−)中心的自旋-机械耦合率提高了一个数量级,达到32 MHz,同时保持了高声光耦合。光学腔与自旋耦合,而不考虑发射体的原生激发态,从而避免了光谱扩散。利用量子蒙特卡罗模拟,我们估计两个这样的界面之间的预示纠缠保真度超过0.96。我们预期,除了钻石发射体-电信系统之外,大多数固态量子存储器也会有广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spin-optomechanical cavity interfaces by deep subwavelength phonon-photon confinement

Spin-optomechanical cavity interfaces by deep subwavelength phonon-photon confinement

A central goal of quantum information science is transferring qubits between space, time, and modality. Spin-based systems in solids are promising quantum memories, but high-fidelity transfer of their quantum states to telecom optical fields remains challenging. Here, we introduce a phonon-mediated interface between spins in a diamond nanobeam optomechanical crystal and telecom optical fields by a simultaneous deep-subwavelength confinement of optical and acoustic fields with mode volumes \({V}_{{\rm{mech}}}/{\Lambda }_{{\rm{p}}}^{3} \sim 1{0}^{-5}\) and Vopt/λ3 ~ 10−3, respectively. This confinement boosts the spin-mechanical coupling rate of Group-IV silicon vacancy (SiV) centers by an order of magnitude to ~ 32 MHz while retaining high acousto-optical couplings. The optical cavity couples to the spin irrespective of the emitter’s native excited states, avoiding spectral diffusion. Using Quantum Monte Carlo simulations, we estimate heralded entanglement fidelities exceeding 0.96 between two such interfaces. We anticipate broad utility beyond diamond emitter-telecom systems to most solid-state quantum memories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信