{"title":"带噪声的等深度线性光电路的经典可模拟性","authors":"Changhun Oh","doi":"10.1038/s41534-025-01041-w","DOIUrl":null,"url":null,"abstract":"<p>Noise is one of the main obstacles to realizing quantum devices that achieve a quantum computational advantage. A possible approach to minimize the noise effect is to employ shallow-depth quantum circuits since noise typically accumulates as circuit depth grows. In this work, we investigate the complexity of shallow-depth linear-optical circuits under the effects of photon loss and partial distinguishability. By establishing a correspondence between a linear-optical circuit and a bipartite graph, we show that the effects of photon loss and partial distinguishability are equivalent to removing the corresponding vertices. Using this correspondence and percolation theory, we prove that for constant-depth linear-optical circuits with single photons, there is a threshold of loss (noise) rate above which the linear-optical systems can be decomposed into smaller systems with high probability, which enables us to simulate the systems efficiently. Consequently, our result implies that even in shallow-depth circuits where noise is not accumulated enough, its effect may be sufficiently significant to make them efficiently simulable using classical algorithms due to its entanglement structure constituted by shallow-depth circuits.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"51 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical simulability of constant-depth linear-optical circuits with noise\",\"authors\":\"Changhun Oh\",\"doi\":\"10.1038/s41534-025-01041-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Noise is one of the main obstacles to realizing quantum devices that achieve a quantum computational advantage. A possible approach to minimize the noise effect is to employ shallow-depth quantum circuits since noise typically accumulates as circuit depth grows. In this work, we investigate the complexity of shallow-depth linear-optical circuits under the effects of photon loss and partial distinguishability. By establishing a correspondence between a linear-optical circuit and a bipartite graph, we show that the effects of photon loss and partial distinguishability are equivalent to removing the corresponding vertices. Using this correspondence and percolation theory, we prove that for constant-depth linear-optical circuits with single photons, there is a threshold of loss (noise) rate above which the linear-optical systems can be decomposed into smaller systems with high probability, which enables us to simulate the systems efficiently. Consequently, our result implies that even in shallow-depth circuits where noise is not accumulated enough, its effect may be sufficiently significant to make them efficiently simulable using classical algorithms due to its entanglement structure constituted by shallow-depth circuits.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01041-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01041-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Classical simulability of constant-depth linear-optical circuits with noise
Noise is one of the main obstacles to realizing quantum devices that achieve a quantum computational advantage. A possible approach to minimize the noise effect is to employ shallow-depth quantum circuits since noise typically accumulates as circuit depth grows. In this work, we investigate the complexity of shallow-depth linear-optical circuits under the effects of photon loss and partial distinguishability. By establishing a correspondence between a linear-optical circuit and a bipartite graph, we show that the effects of photon loss and partial distinguishability are equivalent to removing the corresponding vertices. Using this correspondence and percolation theory, we prove that for constant-depth linear-optical circuits with single photons, there is a threshold of loss (noise) rate above which the linear-optical systems can be decomposed into smaller systems with high probability, which enables us to simulate the systems efficiently. Consequently, our result implies that even in shallow-depth circuits where noise is not accumulated enough, its effect may be sufficiently significant to make them efficiently simulable using classical algorithms due to its entanglement structure constituted by shallow-depth circuits.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.