Alleviating the quantum Big-M problem

IF 8.3 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Edoardo Alessandroni, Sergi Ramos-Calderer, Ingo Roth, Emiliano Traversi, Leandro Aolita
{"title":"Alleviating the quantum Big-M problem","authors":"Edoardo Alessandroni, Sergi Ramos-Calderer, Ingo Roth, Emiliano Traversi, Leandro Aolita","doi":"10.1038/s41534-025-01067-0","DOIUrl":null,"url":null,"abstract":"<p>A major obstacle for quantum optimizers is the reformulation of constraints as a quadratic unconstrained binary optimization (QUBO). Current QUBO translators exaggerate the weight <i>M</i> of the penalty terms. Classically known as the “Big-<i>M</i>” problem, the issue becomes even more daunting for quantum solvers, since it affects the physical energy scale. We take a systematic, encompassing look at the quantum big-<i>M</i> problem, revealing NP-hardness in finding the optimal <i>M</i> and establishing bounds on the Hamiltonian spectral gap Δ as a function of the weight <i>M</i>, inversely related to the expected run-time of quantum solvers. We propose a practical translation algorithm, based on SDP relaxation, that outperforms previous methods in numerical benchmarks. Our algorithm gives values of Δ orders of magnitude greater, e.g. for portfolio optimization instances. Solving such instances with an adiabatic algorithm on 6-qubits of an IonQ device, we observe significant advantages in time to solution and average solution quality. Our findings are relevant to quantum and quantum-inspired solvers alike.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"57 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01067-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A major obstacle for quantum optimizers is the reformulation of constraints as a quadratic unconstrained binary optimization (QUBO). Current QUBO translators exaggerate the weight M of the penalty terms. Classically known as the “Big-M” problem, the issue becomes even more daunting for quantum solvers, since it affects the physical energy scale. We take a systematic, encompassing look at the quantum big-M problem, revealing NP-hardness in finding the optimal M and establishing bounds on the Hamiltonian spectral gap Δ as a function of the weight M, inversely related to the expected run-time of quantum solvers. We propose a practical translation algorithm, based on SDP relaxation, that outperforms previous methods in numerical benchmarks. Our algorithm gives values of Δ orders of magnitude greater, e.g. for portfolio optimization instances. Solving such instances with an adiabatic algorithm on 6-qubits of an IonQ device, we observe significant advantages in time to solution and average solution quality. Our findings are relevant to quantum and quantum-inspired solvers alike.

Abstract Image

缓解量子Big-M问题
量子优化器的一个主要障碍是将约束重新表述为二次无约束二进制优化(QUBO)。目前的QUBO译者夸大了罚项的权重M。这个问题通常被称为“大m”问题,对于量子求解者来说,这个问题变得更加令人生畏,因为它影响到物理能量尺度。我们对量子大M问题进行了系统的、全面的研究,揭示了寻找最优M的np困难,并建立了哈密顿谱间隙Δ作为权重M的函数的界限,与量子求解器的预期运行时间成反比。我们提出了一种实用的基于SDP松弛的翻译算法,该算法在数值基准测试中优于以前的方法。我们的算法给出的值Δ数量级更大,例如投资组合优化实例。在IonQ器件的6量子位元上用绝热算法求解这些实例,我们观察到在求解时间和平均求解质量上有显著的优势。我们的发现与量子和量子启发的解决方案都相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信