Neuroscience最新文献

筛选
英文 中文
The effects of bilateral M1 anodal tDCS on corticomotor excitability and acquisition the of a bimanual videogame skill. 双侧M1淋巴结tDCS对皮质运动兴奋性和双手电子游戏技能习得的影响。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-19 DOI: 10.1016/j.neuroscience.2025.01.028
Davin Greenwell, Hayami Nishio, Jacob Feigh, Quinn McCallion, Brach Poston, Zachary A Riley
{"title":"The effects of bilateral M1 anodal tDCS on corticomotor excitability and acquisition the of a bimanual videogame skill.","authors":"Davin Greenwell, Hayami Nishio, Jacob Feigh, Quinn McCallion, Brach Poston, Zachary A Riley","doi":"10.1016/j.neuroscience.2025.01.028","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.028","url":null,"abstract":"<p><p>Most activities of daily life involve some degree of coordinated, bimanual activity from the upper limbs. However, compared to single-handed movements, bimanual movements are processed, learned, and controlled from both hemispheres of the brain. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that enhances motor learning by modulating the activity of movement-associated brain regions. While effective in simple, single-handed tasks, tDCS has shown mixed results in complex bimanual tasks. This study investigated the effects of bilateral M1 anodal tDCS (biM1 a-tDCS) on learning and cortical excitability during a customized, bimanual racing videogame task. Thirty-six right-handed adults completed three lab visits (∼48 h apart), practicing the task while receiving either biM1 a-tDCS or SHAM tDCS. Cortical excitability was measured with transcranial magnetic stimulation (TMS) and electromyography (EMG) before and after the first visit. Though all subjects demonstrated improvements over the course of the study, our analyses revealed significantly faster rates of learning on days 1 & 2, but not day 3, of practice in subjects receiving biM1 a-tDCS. Moreover, perhaps due to differences in baseline gaming experience and aptitude, this effect appeared to be stronger in female subjects. Interestingly, no significant differences in corticomotor excitability were observed between conditions. Though biM1 a-tDCS did not appear to impact corticomotor excitability, our results contribute to the growing body of evidence which seems to suggest that multifocal tDCS protocols may be superior to traditional, single-site tDCS for the enhancement of bimanual motor learning.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Ski Regulates the Inflammatory Response of Reactive Astrocytes Induced by Oxygen Glucose Deprivation/Reoxygenation (OGD/R) Through the NF-κB Pathway" [Neuroscience 490 (2022) 250-263]. “Ski通过NF-κB通路调节氧葡萄糖剥夺/再氧化(OGD/R)诱导的反应性星形胶质细胞的炎症反应”的更正[神经科学]490(2022)250-263]。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-18 DOI: 10.1016/j.neuroscience.2025.01.006
Hai-Yang Liao, Rui Ran, Chao-Ming Da, Zhi-Qiang Wang, Kai-Sheng Zhou, Hai-Hong Zhang
{"title":"Corrigendum to \"Ski Regulates the Inflammatory Response of Reactive Astrocytes Induced by Oxygen Glucose Deprivation/Reoxygenation (OGD/R) Through the NF-κB Pathway\" [Neuroscience 490 (2022) 250-263].","authors":"Hai-Yang Liao, Rui Ran, Chao-Ming Da, Zhi-Qiang Wang, Kai-Sheng Zhou, Hai-Hong Zhang","doi":"10.1016/j.neuroscience.2025.01.006","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.006","url":null,"abstract":"","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"568 ","pages":"108"},"PeriodicalIF":2.9,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scopolamine affects fear learning and social recognition in adult zebrafish. 东莨菪碱影响成年斑马鱼的恐惧学习和社会认知。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-18 DOI: 10.1016/j.neuroscience.2025.01.041
Chih-Wei Fu, Sok-Keng Tong, Meng-Xuan Liu, Bo-Kai Liao, Ming-Yi Chou
{"title":"Scopolamine affects fear learning and social recognition in adult zebrafish.","authors":"Chih-Wei Fu, Sok-Keng Tong, Meng-Xuan Liu, Bo-Kai Liao, Ming-Yi Chou","doi":"10.1016/j.neuroscience.2025.01.041","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.041","url":null,"abstract":"<p><p>Scopolamine is the secondary metabolite of the Datura stramonium and act as a muscarinic receptor antagonist. Previous studies showed that scopolamine caused attention and memory deficit. However, the effects of scopolamine on specific cognitive functions, such as fear learning and social recognition, remain poorly understood. Here, we demonstrate the effects of scopolamine on fear learning, social memory, and neural activity in zebrafish, providing a novel perspective on its impact on cognitive and social behaviors. Here, we used equal number of male and female zebrafish as an animal model and performed a series of behavioral tests after treatment with scopolamine (100 µM and 200 µM) for 1 h to evaluate social and cognitive functions. Treatment with scopolamine increased locomotion activity, reduced the level of anxiety in the novel tank diving test, and impaired memory retrieval in the active avoidance test. Scopolamine also increased the preference for newly introduced fish in the social recognition test. In situ hybridization of c-fos mRNA showed that scopolamine decreased the neural activity of the telencephalic regions that are crucial for social, cognitive, and memory functions. Our results demonstrate the effects of scopolamine on fear learning and social recognition in adult zebrafish.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The possible role of cerebrolysin in the management of vascular dementia: Leveraging concepts. 脑溶素在血管性痴呆管理中的可能作用:利用概念。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-18 DOI: 10.1016/j.neuroscience.2025.01.040
Hayder M Al-Kuraishy, Ali I Al-Gareeb, Salwa H Zekry, Mubarak Alruwaili, Athanasios Alexiou, Marios Papadakis, Gaber El-Saber Batiha
{"title":"The possible role of cerebrolysin in the management of vascular dementia: Leveraging concepts.","authors":"Hayder M Al-Kuraishy, Ali I Al-Gareeb, Salwa H Zekry, Mubarak Alruwaili, Athanasios Alexiou, Marios Papadakis, Gaber El-Saber Batiha","doi":"10.1016/j.neuroscience.2025.01.040","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.040","url":null,"abstract":"<p><p>Cerebrolysin (CBL) is a combination of neurotrophic peptides and amino acids derived from pig brains. CBL can cross the blood-brain barrier (BBB) and its biological effect is similar to the effect of endogenous neurotrophic effects. The mechanism of action of CBL is related to the induction of neurogenesis, neuroplasticity, neuroprotection, and neurotrophicity. Therefore, CBL may be effective against the development and progression of neurodegenerative diseases such as Alzheimer disease (AD) and cerebrovascular disorders such as vascular dementia (VD). Moreover, many studies highlighted that CBL is effective in the improvement of cognitive impairment in patients with neurodegenerative diseases. However, the underlying neuroprotective effects of CBL against the VD neuropathology were not fully elucidated. Thus, this review aims to discuss the possible therapeutic efficacy of CBL in the management of VD. In conclusion, CBL could be effective therapeutic strategy in preventing and treating VD by targeting neuroinflammation, BBB injury, and chronic cerebral hypoperfusion.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mu opioid receptors expressed in striatal D2 medium spiny neurons have divergent contributions to cocaine and morphine reward. 纹状体D2中棘神经元表达的Mu阿片受体对可卡因和吗啡的奖励有不同的贡献。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-18 DOI: 10.1016/j.neuroscience.2025.01.034
Bailey Remmers, Amélia Nicot, Kanako Matsumura, Polina Lyuboslavsky, In Bae Choi, Yiru Ouyang, Lauren K Dobbs
{"title":"Mu opioid receptors expressed in striatal D2 medium spiny neurons have divergent contributions to cocaine and morphine reward.","authors":"Bailey Remmers, Amélia Nicot, Kanako Matsumura, Polina Lyuboslavsky, In Bae Choi, Yiru Ouyang, Lauren K Dobbs","doi":"10.1016/j.neuroscience.2025.01.034","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.034","url":null,"abstract":"<p><p>While our understanding of the neurobiological mechanisms underlying cocaine and opiate reward has historically been dopamine-focused, evidence from genetic and pharmacological approaches indicates that µ-opioid receptors (MORs) in the striatum are important contributors. Within the striatum, MORs are expressed in both dopamine D1-receptor and D2-receptor expressing GABAergic medium spiny neurons (MSNs), as well as in interneurons and various afferents. Thus, it remains unclear how these distinct MOR populations regulate drug reward. To address this, we generated mice with a targeted deletion of MORs from dopamine D2 receptor-expressing MSNs (D2-MORKO) and tested the locomotor and conditioned rewarding effects of cocaine and morphine. D2-MORKO mice showed blunted acquisition of cocaine place preference and suppressed expression of preference when tested in the presence of cocaine. Conversely, the acute and sensitized locomotor responses to cocaine and morphine, as well as morphine conditioned place preference, were normal in D2-MORKOs. This indicates MORs expressed in D2-MSNs facilitate cocaine reward. Further, these data suggest these MORs play divergent roles in cocaine and morphine reward.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "NRG1-ErbB4 signaling in the cerebrospinal fluid-contacting nucleus regulates thermal pain in mice" [Neuroscience 566 (2025) 132-141]. “脑脊液接触核中NRG1-ErbB4信号调节小鼠热痛”的勘误表[神经科学566(2025)132-141]。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-17 DOI: 10.1016/j.neuroscience.2025.01.033
Yuhan Ding, Yao Yan, Wei Song, Ying Li, Jing Zhao, Bin Gui, Yijun Zhang, Licai Zhang
{"title":"Corrigendum to \"NRG1-ErbB4 signaling in the cerebrospinal fluid-contacting nucleus regulates thermal pain in mice\" [Neuroscience 566 (2025) 132-141].","authors":"Yuhan Ding, Yao Yan, Wei Song, Ying Li, Jing Zhao, Bin Gui, Yijun Zhang, Licai Zhang","doi":"10.1016/j.neuroscience.2025.01.033","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.033","url":null,"abstract":"","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"568 ","pages":"57"},"PeriodicalIF":2.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1950s-1990s: The pioneering era of insect neuroscience in Uruguay. 20世纪50年代至90年代:乌拉圭昆虫神经科学的先驱时代。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-17 DOI: 10.1016/j.neuroscience.2025.01.027
María Constanza Silvera, Daniel Prieto
{"title":"1950s-1990s: The pioneering era of insect neuroscience in Uruguay.","authors":"María Constanza Silvera, Daniel Prieto","doi":"10.1016/j.neuroscience.2025.01.027","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.027","url":null,"abstract":"<p><p>Insect research has significantly advanced neuroscience by addressing fundamental questions, with groundbreaking discoveries emerging from research carried out in Uruguay. Powered by technological advances, the field has seen milestones in ultrastructure, neuronal and synaptic structure, and complex behavioral findings. Key contributions include the first formal description of chemical synapses, the identification of synaptic vesicle origins in the endoplasmic reticulum, and pioneering work on eye induction and development. Uruguay's research has also provided critical insights into neural degeneration and repair mechanisms, the functional microanatomy of the visual pathway, and mechanoreception. This review highlights four decades of Uruguayan legacy in insect neuroscience, underscoring how a small, yet vibrant, community of researchers has embraced interdisciplinary collaborations and innovative methodologies. Additionally, this review addresses the evolving role of women in the field and the collaborative spirit that has propelled scientific discovery, marking a critical juncture in the development of insect neuroscience. Despite limited resources, Uruguay has played a pivotal role in advancing our understanding of brain organization, neuronal-glial interactions, and connectomics, making lasting contributions to both local and global neuroscience.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurovascular coupling dysfunction associated with inflammatory factors in sudden sensorineural hearing loss. 突发性感音神经性听力损失与炎症因子相关的神经血管偶联功能障碍。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-16 DOI: 10.1016/j.neuroscience.2025.01.035
Chengyan Feng, Shuo Li, Chunhua Xing, Xiaomin Xu, Jin-Jing Xu, Wei Meng, Yu-Chen Chen, Zigang Che
{"title":"Neurovascular coupling dysfunction associated with inflammatory factors in sudden sensorineural hearing loss.","authors":"Chengyan Feng, Shuo Li, Chunhua Xing, Xiaomin Xu, Jin-Jing Xu, Wei Meng, Yu-Chen Chen, Zigang Che","doi":"10.1016/j.neuroscience.2025.01.035","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.035","url":null,"abstract":"<p><strong>Purpose: </strong>The neuropathologic mechanisms of sudden sensorineural hearing loss (SSNHL) are unknown. The aim of this study was to investigate the alterations of neurovascular coupling (NVC) in patients with SSNHL and its association with hematologic inflammatory factors.</p><p><strong>Methods: </strong>The amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated in 48 patients with SSNHL and 54 age-, gender-, and education-matched healthy control (HC), and also utilized the arterial spin labeling imaging (ASL) to calculate cerebral blood flow (CBF). Four indices of NVC (CBF-ALFF, CBF-fALFF, CBF-ReHo, and CBF-DC) in the whole brain gray matter as well as the NVC ratio were compared between two groups. In addition, correlation analyses were performed with inflammatory factors for the NVC indexes at the global level and regional level, respectively.</p><p><strong>Results: </strong>The NVC at global level was lower in SSNHL group than in HC, except for CBF-ALFF. At the regional level, most of the brain regions with abnormal NVC in SSNHL patients involved auditory and sensorimotor language centers and limbic system compared to HC. In addition, both at the global and regional levels, NVC metrics were shown to correlate with partial inflammatory factors or hematologic parameters, including platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), systemic immunoinflammatory index (SII), blood platelet count (PLT), and lymphocyte count (Lym).</p><p><strong>Conclusion: </strong>From the view of the NVC metrics, these findings provide new perspectives on the neuropathologic mechanisms and clinical treatment of SSNHL.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"568 ","pages":"130-138"},"PeriodicalIF":2.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurobiology of L-proline: From molecules to behavior. l -脯氨酸的神经生物学:从分子到行为。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-16 DOI: 10.1016/j.neuroscience.2025.01.036
Gustavo Almeida Carvalho, Daniel Pereira Cavalcante, Ricardo Cambraia Parreira, Raphaela Almeida Chiareli, Giovanni Ortiz Leoncini, Renato Santiago Gomez, Henning Ulrich, Leonardo Ferreira Caixeta, Onésia Cristina Oliveira-Lima, Mauro Cunha Xavier Pinto
{"title":"Neurobiology of L-proline: From molecules to behavior.","authors":"Gustavo Almeida Carvalho, Daniel Pereira Cavalcante, Ricardo Cambraia Parreira, Raphaela Almeida Chiareli, Giovanni Ortiz Leoncini, Renato Santiago Gomez, Henning Ulrich, Leonardo Ferreira Caixeta, Onésia Cristina Oliveira-Lima, Mauro Cunha Xavier Pinto","doi":"10.1016/j.neuroscience.2025.01.036","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.036","url":null,"abstract":"<p><p>L-proline is an amino acid with a unique cyclic structure, involvement in various physiological processes, such as protein synthesis, collagen production, and neurotransmission. This review explores the complex roles of proline in the central nervous system (CNS), where it contributes to both excitatory and inhibitory neurotransmission. Additionally, L-proline has distinct metabolic functions attributed to its structural properties. The concentration-dependent effects of L-proline indicate its importance in CNS function, with potential implications for health and disease. Studies in animal models suggest that L-proline influences cognitive function and behavior, with dysregulated levels linked to learning and memory deficits. Furthermore, this review addresses the neuropathological consequences of hyperprolinemia, a metabolic disorder marked by elevated L-proline levels in the CNS and examines the potential role of L-proline in neurological and psychiatric disorders. In sum, this work provides a comprehensive perspective on the neurobiological importance of L-proline, underscoring its involvement in neurotransmission, behavioral modulation, and disease pathology.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"568 ","pages":"116-129"},"PeriodicalIF":2.9,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role and therapeutic considerations of SIRT1 in epilepsy. SIRT1在癫痫中的作用及治疗注意事项。
IF 2.9 3区 医学
Neuroscience Pub Date : 2025-01-15 DOI: 10.1016/j.neuroscience.2025.01.029
Shasha Zeng, Xiangyi Huang, Shunlin Qu, Qingpeng Hu
{"title":"Role and therapeutic considerations of SIRT1 in epilepsy.","authors":"Shasha Zeng, Xiangyi Huang, Shunlin Qu, Qingpeng Hu","doi":"10.1016/j.neuroscience.2025.01.029","DOIUrl":"https://doi.org/10.1016/j.neuroscience.2025.01.029","url":null,"abstract":"<p><p>Epilepsy is a primary study focus for scientists worldwide due to its prevalence and poor prognosis. Silent information regulator 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, is becoming increasingly recognized for its critical role in the pathophysiology and progression of epilepsy. The treatment of epilepsy remains challenging despite the discovery of numerous factors that contribute to the development of several beneficial medications. In recent years, many microRNAs have been linked to the progression of epilepsy because they target SIRT1 mRNA. SIRT1, which protects from epilepsy, has been reported to be upregulated by several natural compounds and their derivatives. This review will summarize the latest findings about SIRT1's role in epilepsy. Results from the literature indicate that SIRT1 is a promising target for epilepsy therapy.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"568 ","pages":"109-115"},"PeriodicalIF":2.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信