Taymaz Akan , Sara Akan , Sait Alp , Christina Raye Ledbetter , Mohammad Alfrad Nobel Bhuiyan , for the Alzheimer’s Disease Neuroimaging Initiative
{"title":"AlzFormer: Video-based space-time attention model for early diagnosis of Alzheimer’s disease","authors":"Taymaz Akan , Sara Akan , Sait Alp , Christina Raye Ledbetter , Mohammad Alfrad Nobel Bhuiyan , for the Alzheimer’s Disease Neuroimaging Initiative","doi":"10.1016/j.neuroscience.2025.08.062","DOIUrl":null,"url":null,"abstract":"<div><div>Early and accurate Alzheimer’s disease (AD) diagnosis is critical for effective intervention, but it is still challenging due to neurodegeneration’s slow and complex progression. Recent studies in brain imaging analysis have highlighted the crucial roles of deep learning techniques in computer-assisted interventions for diagnosing brain diseases. In this study, we propose AlzFormer, a novel deep learning framework based on a space–time attention mechanism, for multiclass classification of AD, MCI, and CN individuals using structural MRI scans. Unlike conventional deep learning models, we used spatiotemporal self-attention to model inter-slice continuity by treating T1-weighted MRI volumes as sequential inputs, where slices correspond to video frames. Our model was fine-tuned and evaluated using 1.5 T MRI scans from the ADNI dataset. To ensure the anatomical consistency of all the MRI data, All MRI volumes were pre-processed with skull stripping and spatial normalization to MNI space. AlzFormer achieved an overall accuracy of 94 % on the test set, with balanced class-wise F1-scores (AD: 0.94, MCI: 0.99, CN: 0.98) and a macro-average AUC of 0.98. We also utilized attention map analysis to identify clinically significant patterns, particularly emphasizing subcortical structures and medial temporal regions implicated in AD. These findings demonstrate the potential of transformer-based architectures for robust and interpretable classification of brain disorders using structural MRI.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"585 ","pages":"Pages 133-143"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225009108","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Early and accurate Alzheimer’s disease (AD) diagnosis is critical for effective intervention, but it is still challenging due to neurodegeneration’s slow and complex progression. Recent studies in brain imaging analysis have highlighted the crucial roles of deep learning techniques in computer-assisted interventions for diagnosing brain diseases. In this study, we propose AlzFormer, a novel deep learning framework based on a space–time attention mechanism, for multiclass classification of AD, MCI, and CN individuals using structural MRI scans. Unlike conventional deep learning models, we used spatiotemporal self-attention to model inter-slice continuity by treating T1-weighted MRI volumes as sequential inputs, where slices correspond to video frames. Our model was fine-tuned and evaluated using 1.5 T MRI scans from the ADNI dataset. To ensure the anatomical consistency of all the MRI data, All MRI volumes were pre-processed with skull stripping and spatial normalization to MNI space. AlzFormer achieved an overall accuracy of 94 % on the test set, with balanced class-wise F1-scores (AD: 0.94, MCI: 0.99, CN: 0.98) and a macro-average AUC of 0.98. We also utilized attention map analysis to identify clinically significant patterns, particularly emphasizing subcortical structures and medial temporal regions implicated in AD. These findings demonstrate the potential of transformer-based architectures for robust and interpretable classification of brain disorders using structural MRI.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.