Cognitive prediction using regional connectivities and network biomarkers in Alzheimer’s disease

IF 2.8 3区 医学 Q2 NEUROSCIENCES
Jinhua Sheng , Jialei Wang , Qiao Zhang , Ruilin Huang , Yan Lu , Tao Li
{"title":"Cognitive prediction using regional connectivities and network biomarkers in Alzheimer’s disease","authors":"Jinhua Sheng ,&nbsp;Jialei Wang ,&nbsp;Qiao Zhang ,&nbsp;Ruilin Huang ,&nbsp;Yan Lu ,&nbsp;Tao Li","doi":"10.1016/j.neuroscience.2025.08.059","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving a deep understanding of brain mechanisms requires multi-scale perspectives to capture the architecture of complex networks. In this study, we focused on patients with cognitive impairment and constructed individual brain networks from neuroimaging data. We introduced a Significant Edges Selection (SES) method, which effectively extracts the most informative connections while suppressing noise. Using these refined features, we computed network characteristics and applied machine learning models to predict cognitive performance, achieving a prediction accuracy of correlation r = 0.683 under rigorous leave-one-out cross-validation. Importantly, we identified core brain regions and large-scale networks that drive predictive performance. Specifically, the secondary visual (VIS2), frontoparietal control (FPN), and default mode (DMN) networks emerged as the most strongly associated with cognitive decline. Our findings highlight a multi-scale framework, spanning connections, brain regions, and networks, that not only yields robust cognitive prediction but also provides novel insights into AD-related mechanisms. This work advances predictive modeling in Alzheimer’s Disease (AD) and offers valuable guidance for early diagnosis and mechanistic research.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"585 ","pages":"Pages 313-322"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225009078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving a deep understanding of brain mechanisms requires multi-scale perspectives to capture the architecture of complex networks. In this study, we focused on patients with cognitive impairment and constructed individual brain networks from neuroimaging data. We introduced a Significant Edges Selection (SES) method, which effectively extracts the most informative connections while suppressing noise. Using these refined features, we computed network characteristics and applied machine learning models to predict cognitive performance, achieving a prediction accuracy of correlation r = 0.683 under rigorous leave-one-out cross-validation. Importantly, we identified core brain regions and large-scale networks that drive predictive performance. Specifically, the secondary visual (VIS2), frontoparietal control (FPN), and default mode (DMN) networks emerged as the most strongly associated with cognitive decline. Our findings highlight a multi-scale framework, spanning connections, brain regions, and networks, that not only yields robust cognitive prediction but also provides novel insights into AD-related mechanisms. This work advances predictive modeling in Alzheimer’s Disease (AD) and offers valuable guidance for early diagnosis and mechanistic research.
阿尔茨海默病中使用区域连接和网络生物标志物的认知预测。
实现对大脑机制的深刻理解需要多尺度的视角来捕捉复杂网络的架构。在这项研究中,我们关注认知障碍患者,并从神经影像学数据构建个体脑网络。引入了一种有效边缘选择(SES)方法,在抑制噪声的同时有效地提取信息最多的连接。利用这些改进的特征,我们计算了网络特征,并应用机器学习模型来预测认知表现,在严格的留一交叉验证下,预测精度为r = 0.683。重要的是,我们确定了驱动预测性能的核心大脑区域和大规模网络。具体来说,次级视觉(VIS2)、额顶叶控制(FPN)和默认模式(DMN)网络与认知能力下降的关系最为密切。我们的发现强调了一个跨连接、大脑区域和网络的多尺度框架,不仅产生了强大的认知预测,而且为广告相关机制提供了新的见解。这项工作推进了阿尔茨海默病(AD)的预测建模,为早期诊断和机制研究提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信