Molecular Plant最新文献

筛选
英文 中文
Embracing substrate multispecificity in plant ABC transporters. 植物 ABC 转运体的底物多特异性。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-07-01 Epub Date: 2024-05-29 DOI: 10.1016/j.molp.2024.05.009
Markus M Geisler
{"title":"Embracing substrate multispecificity in plant ABC transporters.","authors":"Markus M Geisler","doi":"10.1016/j.molp.2024.05.009","DOIUrl":"10.1016/j.molp.2024.05.009","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic modulation of nodulation factor receptor levels by phosphorylation-mediated functional switch of a RING-type E3 ligase during legume nodulation. 在豆科植物拔节过程中,通过磷酸化介导的 RING 型 E3 连接酶的功能转换,对拔节因子受体水平进行动态调节。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-07-01 Epub Date: 2024-05-31 DOI: 10.1016/j.molp.2024.05.010
Hao Li, Yajuan Ou, Jidan Zhang, Kui Huang, Ping Wu, Xiaoli Guo, Hui Zhu, Yangrong Cao
{"title":"Dynamic modulation of nodulation factor receptor levels by phosphorylation-mediated functional switch of a RING-type E3 ligase during legume nodulation.","authors":"Hao Li, Yajuan Ou, Jidan Zhang, Kui Huang, Ping Wu, Xiaoli Guo, Hui Zhu, Yangrong Cao","doi":"10.1016/j.molp.2024.05.010","DOIUrl":"10.1016/j.molp.2024.05.010","url":null,"abstract":"<p><p>The precise control of receptor levels is crucial for initiating cellular signaling transduction in response to specific ligands; however, such mechanisms regulating nodulation factor (NF) receptor (NFR)-mediated perception of NFs to establish symbiosis remain unclear. In this study, we unveil the pivotal role of the NFR-interacting RING-type E3 ligase 1 (NIRE1) in regulating NFR1/NFR5 homeostasis to optimize rhizobial infection and nodule development in Lotus japonicus. We demonstrated that NIRE1 has a dual function in this regulatory process. It associates with both NFR1 and NFR5, facilitating their degradation through K48-linked polyubiquitination before rhizobial inoculation. However, following rhizobial inoculation, NFR1 phosphorylates NIRE1 at a conserved residue, Tyr-109, inducing a functional switch in NIRE1, which enables NIRE1 to mediate K63-linked polyubiquitination, thereby stabilizing NFR1/NFR5 in infected root cells. The introduction of phospho-dead NIRE1<sup>Y109F</sup> leads to delayed nodule development, underscoring the significance of phosphorylation at Tyr-109 in orchestrating symbiotic processes. Conversely, expression of the phospho-mimic NIRE1<sup>Y109E</sup> results in the formation of spontaneous nodules in L. japonicus, further emphasizing the critical role of the phosphorylation-dependent functional switch in NIRE1. In summary, these findings uncover a fine-tuned symbiotic mechanism that a single E3 ligase could undergo a phosphorylation-dependent functional switch to dynamically and precisely regulate NF receptor protein levels.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guardian of the rice: Unveiling OsSSP1 for broad-spectrum disease resistance. 水稻卫士:揭示 OsSSP1 的广谱抗病性。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-07-01 Epub Date: 2024-06-06 DOI: 10.1016/j.molp.2024.06.002
You-Jin Lim, Yong-Hwan Lee
{"title":"Guardian of the rice: Unveiling OsSSP1 for broad-spectrum disease resistance.","authors":"You-Jin Lim, Yong-Hwan Lee","doi":"10.1016/j.molp.2024.06.002","DOIUrl":"10.1016/j.molp.2024.06.002","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polycomb and trithorax: Their yin-yang dynamics in plants. 多角体和三喙体:它们在植物中的阴阳动态。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-06-03 Epub Date: 2024-05-23 DOI: 10.1016/j.molp.2024.05.005
Fan Xu, Daolei Zhang, Liang Le, Li Pu
{"title":"Polycomb and trithorax: Their yin-yang dynamics in plants.","authors":"Fan Xu, Daolei Zhang, Liang Le, Li Pu","doi":"10.1016/j.molp.2024.05.005","DOIUrl":"10.1016/j.molp.2024.05.005","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141088493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histological and single-nucleus transcriptome analyses reveal the specialized functions of ligular sclerenchyma cells and key regulators of leaf angle in maize. 组织学和单核转录组分析揭示了玉米叶状细纹细胞的特殊功能和叶角的关键调控因子
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2024-06-03 Epub Date: 2024-05-07 DOI: 10.1016/j.molp.2024.05.001
Qibin Wang, Qiuyue Guo, Qingbiao Shi, Hengjia Yang, Meiling Liu, Yani Niu, Shuxuan Quan, Di Xu, Xiaofeng Chen, Laiyi Li, Wenchang Xu, Fanying Kong, Haisen Zhang, Pinghua Li, Bosheng Li, Gang Li
{"title":"Histological and single-nucleus transcriptome analyses reveal the specialized functions of ligular sclerenchyma cells and key regulators of leaf angle in maize.","authors":"Qibin Wang, Qiuyue Guo, Qingbiao Shi, Hengjia Yang, Meiling Liu, Yani Niu, Shuxuan Quan, Di Xu, Xiaofeng Chen, Laiyi Li, Wenchang Xu, Fanying Kong, Haisen Zhang, Pinghua Li, Bosheng Li, Gang Li","doi":"10.1016/j.molp.2024.05.001","DOIUrl":"10.1016/j.molp.2024.05.001","url":null,"abstract":"<p><p>Leaf angle (LA) is a crucial factor that affects planting density and yield in maize. However, the regulatory mechanisms underlying LA formation remain largely unknown. In this study, we performed a comparative histological analysis of the ligular region across various maize inbred lines and revealed that LA is significantly influenced by a two-step regulatory process involving initial cell elongation followed by subsequent lignification in the ligular adaxial sclerenchyma cells (SCs). Subsequently, we performed both bulk and single-nucleus RNA sequencing, generated a comprehensive transcriptomic atlas of the ligular region, and identified numerous genes enriched in the hypodermal cells that may influence their specialization into SCs. Furthermore, we functionally characterized two genes encoding atypical basic-helix-loop-helix (bHLH) transcription factors, bHLH30 and its homolog bHLH155, which are highly expressed in the elongated adaxial cells. Genetic analyses revealed that bHLH30 and bHLH155 positively regulate LA expansion, and molecular experiments demonstrated their ability to activate the transcription of genes involved in cell elongation and lignification of SCs. These findings highlight the specialized functions of ligular adaxial SCs in LA regulation by restricting further extension of ligular cells and enhancing mechanical strength. The transcriptomic atlas of the ligular region at single-nucleus resolution not only deepens our understanding of LA regulation but also enables identification of numerous potential targets for optimizing plant architecture in modern maize breeding.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":27.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. 一种环状单链 DNA 真菌病毒感染植物并产生广谱抗真菌病能力
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2024-06-03 Epub Date: 2024-05-13 DOI: 10.1016/j.molp.2024.05.003
Xianhong Wang, Ioly Kotta-Loizou, Robert H A Coutts, Huifang Deng, Zhenhao Han, Ni Hong, Karim Shafik, Liping Wang, Yashuang Guo, Mengmeng Yang, Wenxing Xu, Guoping Wang
{"title":"A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance.","authors":"Xianhong Wang, Ioly Kotta-Loizou, Robert H A Coutts, Huifang Deng, Zhenhao Han, Ni Hong, Karim Shafik, Liping Wang, Yashuang Guo, Mengmeng Yang, Wenxing Xu, Guoping Wang","doi":"10.1016/j.molp.2024.05.003","DOIUrl":"10.1016/j.molp.2024.05.003","url":null,"abstract":"<p><p>Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":27.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice. OsPRMT6a 介导的 OsJAZ1 精氨酸甲基化调控水稻的茉莉酸信号传导和小穗发育。
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2024-06-03 Epub Date: 2024-05-04 DOI: 10.1016/j.molp.2024.04.014
Kun Dong, Fuqing Wu, Siqi Cheng, Shuai Li, Feng Zhang, Xinxin Xing, Xin Jin, Sheng Luo, Miao Feng, Rong Miao, Yanqi Chang, Shuang Zhang, Xiaoman You, Peiran Wang, Xin Zhang, Cailin Lei, Yulong Ren, Shanshan Zhu, Xiuping Guo, Chuanyin Wu, Dong-Lei Yang, Qibing Lin, Zhijun Cheng, Jianmin Wan
{"title":"OsPRMT6a-mediated arginine methylation of OsJAZ1 regulates jasmonate signaling and spikelet development in rice.","authors":"Kun Dong, Fuqing Wu, Siqi Cheng, Shuai Li, Feng Zhang, Xinxin Xing, Xin Jin, Sheng Luo, Miao Feng, Rong Miao, Yanqi Chang, Shuang Zhang, Xiaoman You, Peiran Wang, Xin Zhang, Cailin Lei, Yulong Ren, Shanshan Zhu, Xiuping Guo, Chuanyin Wu, Dong-Lei Yang, Qibing Lin, Zhijun Cheng, Jianmin Wan","doi":"10.1016/j.molp.2024.04.014","DOIUrl":"10.1016/j.molp.2024.04.014","url":null,"abstract":"<p><p>Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in the control of spikelet development remains unclear. In this study, we used the CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants that exhibit various abnormal spikelet structures. Interestingly, we found that OsPRMT6a can methylate arginine residues in JA signal repressors OsJAZ1 and OsJAZ7. We showed that arginine methylation of OsJAZ1 enhances the binding affinity of OsJAZ1 with the JA receptors OsCOI1a and OsCOI1b in the presence of JAs, thereby promoting the ubiquitination of OsJAZ1 by the SCF<sup>OsCOI1a/OsCOI1b</sup> complex and degradation via the 26S proteasome. This process ultimately releases OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaires the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins become more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduces the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. We further found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Collectively, our study establishes a direct molecular link between arginine methylation and JA signaling in rice.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":27.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140857225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary genomics of climatic adaptation and resilience to climate change in alfalfa. 紫花苜蓿气候适应性和气候变化复原力的进化基因组学。
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2024-06-03 Epub Date: 2024-04-26 DOI: 10.1016/j.molp.2024.04.013
Fan Zhang, Ruicai Long, Zhiyao Ma, Hua Xiao, Xiaodong Xu, Zhongjie Liu, Chunxue Wei, Yiwen Wang, Yanling Peng, Xuanwen Yang, Xiaoya Shi, Shuo Cao, Mingna Li, Ming Xu, Fei He, Xueqian Jiang, Tiejun Zhang, Zhen Wang, Xianran Li, Long-Xi Yu, Junmei Kang, Zhiwu Zhang, Yongfeng Zhou, Qingchuan Yang
{"title":"Evolutionary genomics of climatic adaptation and resilience to climate change in alfalfa.","authors":"Fan Zhang, Ruicai Long, Zhiyao Ma, Hua Xiao, Xiaodong Xu, Zhongjie Liu, Chunxue Wei, Yiwen Wang, Yanling Peng, Xuanwen Yang, Xiaoya Shi, Shuo Cao, Mingna Li, Ming Xu, Fei He, Xueqian Jiang, Tiejun Zhang, Zhen Wang, Xianran Li, Long-Xi Yu, Junmei Kang, Zhiwu Zhang, Yongfeng Zhou, Qingchuan Yang","doi":"10.1016/j.molp.2024.04.013","DOIUrl":"10.1016/j.molp.2024.04.013","url":null,"abstract":"<p><p>Given the escalating impact of climate change on agriculture and food security, gaining insights into the evolutionary dynamics of climatic adaptation and uncovering climate-adapted variation can empower the breeding of climate-resilient crops to face future climate change. Alfalfa (Medicago sativa subsp. sativa), the queen of forages, shows remarkable adaptability across diverse global environments, making it an excellent model for investigating species responses to climate change. In this study, we performed population genomic analyses using genome resequencing data from 702 accessions of 24 Medicago species to unravel alfalfa's climatic adaptation and genetic susceptibility to future climate change. We found that interspecific genetic exchange has contributed to the gene pool of alfalfa, particularly enriching defense and stress-response genes. Intersubspecific introgression between M. sativa subsp. falcata (subsp. falcata) and alfalfa not only aids alfalfa's climatic adaptation but also introduces genetic burden. A total of 1671 genes were associated with climatic adaptation, and 5.7% of them were introgressions from subsp. falcata. By integrating climate-associated variants and climate data, we identified populations that are vulnerable to future climate change, particularly in higher latitudes of the Northern Hemisphere. These findings serve as a clarion call for targeted conservation initiatives and breeding efforts. We also identified pre-adaptive populations that demonstrate heightened resilience to climate fluctuations, illuminating a pathway for future breeding strategies. Collectively, this study enhances our understanding about the local adaptation mechanisms of alfalfa and facilitates the breeding of climate-resilient alfalfa cultivars, contributing to effective agricultural strategies for facing future climate change.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":27.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activation of stress-response genes by retrograde signaling-mediated destabilization of nuclear importin IMPα-9 and its interactor TPR2. 逆行信号介导的核导入蛋白 IMPα-9 及其互作因子 TPR2 的不稳定性激活了应激反应基因。
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2024-06-03 Epub Date: 2024-05-01 DOI: 10.1016/j.molp.2024.04.008
Liping Zeng, Maria Fernanda Gomez Mendez, Jingzhe Guo, Jishan Jiang, Bailong Zhang, Hao Chen, Brandon Le, Haiyan Ke, Katayoon Dehesh
{"title":"Activation of stress-response genes by retrograde signaling-mediated destabilization of nuclear importin IMPα-9 and its interactor TPR2.","authors":"Liping Zeng, Maria Fernanda Gomez Mendez, Jingzhe Guo, Jishan Jiang, Bailong Zhang, Hao Chen, Brandon Le, Haiyan Ke, Katayoon Dehesh","doi":"10.1016/j.molp.2024.04.008","DOIUrl":"10.1016/j.molp.2024.04.008","url":null,"abstract":"<p><p>Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists. To address this, we performed a suppressor screen of the ceh1 mutant, which contains elevated 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) levels, and identified the gain-of-function mutant impα-9, which shows reversed dwarfism and suppressed expression of stress-response genes in the ceh1 background despite heightened MEcPP. Subsequent genetic and biochemical analyses established that the accumulation of MEcPP initiates an upsurge in Arabidopsis SKP1-like 1 (ASK1) abundance, a pivotal component in the proteasome degradation pathway. This increase in ASK1 prompts the degradation of IMPα-9. Moreover, we uncovered a protein-protein interaction between IMPα-9 and TPR2, a transcriptional co-suppressor and found that a reduction in IMPα-9 levels coincides with a decrease in TPR2 abundance. Significantly, the interaction between IMPα-9 and TPR2 was disrupted in impα-9 mutants, highlighting the critical role of a single amino acid alteration in maintaining their association. Disruption of their interaction results in the reversal of MEcPP-associated phenotypes. Chromatin immunoprecipitation coupled with sequencing analyses revealed that TPR2 binds globally to stress-response genes and suggested that IMPα-9 associates with the chromatin. They function together to suppress the expression of stress-response genes under normal conditions, but this suppression is alleviated in response to stress through the degradation of the suppressing machinery. The biological relevance of our discoveries was validated under high light stress, marked by MEcPP accumulation, elevated ASK1 levels, IMPα-9 degredation, reduced TPR2 abundance, and subsequent activation of a network of stress-response genes. In summary, our study collectively unveils fresh insights into plant adaptive mechanisms, highlighting intricate interactions among retrograde signaling, the proteasome, and nuclear transport machinery.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":27.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The RNA binding protein EHD6 recruits the m6A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering. RNA 结合蛋白 EHD6 招募 m6A 阅读器 YTH07 并将 OsCOL4 mRNA 封闭在相分离的核糖核蛋白凝聚体中,以促进水稻开花。
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2024-06-03 Epub Date: 2024-05-07 DOI: 10.1016/j.molp.2024.05.002
Song Cui, Peizhe Song, Chaolong Wang, Saihua Chen, Benyuan Hao, Zhuang Xu, Liang Cai, Xu Chen, Shanshan Zhu, Xiangchao Gan, Hui Dong, Yuan Hu, Liang Zhou, Haigang Hou, Yunlu Tian, Xi Liu, Liangming Chen, Shijia Liu, Ling Jiang, Haiyang Wang, Guifang Jia, Shirong Zhou, Jianmin Wan
{"title":"The RNA binding protein EHD6 recruits the m<sup>6</sup>A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering.","authors":"Song Cui, Peizhe Song, Chaolong Wang, Saihua Chen, Benyuan Hao, Zhuang Xu, Liang Cai, Xu Chen, Shanshan Zhu, Xiangchao Gan, Hui Dong, Yuan Hu, Liang Zhou, Haigang Hou, Yunlu Tian, Xi Liu, Liangming Chen, Shijia Liu, Ling Jiang, Haiyang Wang, Guifang Jia, Shirong Zhou, Jianmin Wan","doi":"10.1016/j.molp.2024.05.002","DOIUrl":"10.1016/j.molp.2024.05.002","url":null,"abstract":"<p><p>N<sup>6</sup>-Methyladenosine (m<sup>6</sup>A) is one of the most abundant modifications of eukaryotic mRNA, but its comprehensive biological functionality remains further exploration. In this study, we identified and characterized a new flowering-promoting gene, EARLY HEADING DATE6 (EHD6), in rice. EHD6 encodes an RNA recognition motif (RRM)-containing RNA binding protein that is localized in the non-membranous cytoplasm ribonucleoprotein (RNP) granules and can bind both m<sup>6</sup>A-modified RNA and unmodified RNA indiscriminately. We found that EHD6 can physically interact with YTH07, a YTH (YT521-B homology) domain-containing m<sup>6</sup>A reader. We showed that their interaction enhances the binding of an m<sup>6</sup>A-modified RNA and triggers relocation of a portion of YTH07 from the cytoplasm into RNP granules through phase-separated condensation. Within these condensates, the mRNA of a rice flowering repressor, CONSTANS-like 4 (OsCOL4), becomes sequestered, leading to a reduction in its protein abundance and thus accelerated flowering through the Early heading date 1 pathway. Taken together, these results not only shed new light on the molecular mechanism of efficient m<sup>6</sup>A recognition by the collaboration between an RNA binding protein and YTH family m<sup>6</sup>A reader, but also uncover the potential for m<sup>6</sup>A-mediated translation regulation through phase-separated ribonucleoprotein condensation in rice.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":27.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信