在拟南芥中,两个e枝蛋白磷酸酶2c通过去磷酸化ABI1来增强ABA信号。

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ya Zhang, Liyuan Han, Junjie Liu, Miao Chang, Chuanling Li, Jian-Xiu Shang, Zhiping Deng, Wenqiang Tang, Yu Sun
{"title":"在拟南芥中,两个e枝蛋白磷酸酶2c通过去磷酸化ABI1来增强ABA信号。","authors":"Ya Zhang, Liyuan Han, Junjie Liu, Miao Chang, Chuanling Li, Jian-Xiu Shang, Zhiping Deng, Wenqiang Tang, Yu Sun","doi":"10.1016/j.molp.2025.03.019","DOIUrl":null,"url":null,"abstract":"<p><p>ABA INSENSITIVE 1 (ABI1) and ABI2 are co-receptors of the phytohormone abscisic acid (ABA). Studies have demonstrated that phosphorylation of multiple amino acids on ABI1/2 augments their ability to inhibit ABA signaling in planta. However, it is currently unknown whether there exists a mechanism to regulate the dephosphorylation of ABI1/2 that enhances the plant's sensitivity to ABA. In this study, we identified two protein phosphatases, designated ABI1 Dephosphorylating E clade PP2C 1 (ADEP1) and ADEP2, that interact with ABI1/2. Mutants lacking ADEP1, ADEP2, or both (adep1/2) exhibited reduced sensitivity to ABA-inhibited seed germination, root growth and ABA-induced stomatal closure. Additionally, ABA-induced accumulation of ABI5 protein and the expression of downstream target genes were reduced in the adep1/2 mutant compared to the wild-type. These findings suggest that ADEP1/2 function as positive regulators of the ABA signaling pathway. Mass spectrometry analysis and two-dimensional electrophoresis identified Ser<sup>117</sup> as a major ABA-induced phosphorylation site on ABI1 protein. ADEP1/2 can dephosphorylate Ser<sup>117</sup>, leading to the destabilization of ABI1 protein and increased sensitivity to ABA in plants. Moreover, ABA treatment decreases the abundance of ADEP1/2 proteins. Overall, our study discovers two novel regulatory proteins that modulate ABA signaling and provides new insights into the regulatory network that fine-tune plant ABA responses.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two E-clade Protein Phosphatase 2Cs enhance ABA signaling by dephosphorylating ABI1 in Arabidopsis.\",\"authors\":\"Ya Zhang, Liyuan Han, Junjie Liu, Miao Chang, Chuanling Li, Jian-Xiu Shang, Zhiping Deng, Wenqiang Tang, Yu Sun\",\"doi\":\"10.1016/j.molp.2025.03.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ABA INSENSITIVE 1 (ABI1) and ABI2 are co-receptors of the phytohormone abscisic acid (ABA). Studies have demonstrated that phosphorylation of multiple amino acids on ABI1/2 augments their ability to inhibit ABA signaling in planta. However, it is currently unknown whether there exists a mechanism to regulate the dephosphorylation of ABI1/2 that enhances the plant's sensitivity to ABA. In this study, we identified two protein phosphatases, designated ABI1 Dephosphorylating E clade PP2C 1 (ADEP1) and ADEP2, that interact with ABI1/2. Mutants lacking ADEP1, ADEP2, or both (adep1/2) exhibited reduced sensitivity to ABA-inhibited seed germination, root growth and ABA-induced stomatal closure. Additionally, ABA-induced accumulation of ABI5 protein and the expression of downstream target genes were reduced in the adep1/2 mutant compared to the wild-type. These findings suggest that ADEP1/2 function as positive regulators of the ABA signaling pathway. Mass spectrometry analysis and two-dimensional electrophoresis identified Ser<sup>117</sup> as a major ABA-induced phosphorylation site on ABI1 protein. ADEP1/2 can dephosphorylate Ser<sup>117</sup>, leading to the destabilization of ABI1 protein and increased sensitivity to ABA in plants. Moreover, ABA treatment decreases the abundance of ADEP1/2 proteins. Overall, our study discovers two novel regulatory proteins that modulate ABA signaling and provides new insights into the regulatory network that fine-tune plant ABA responses.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.03.019\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.03.019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

ABA不敏感1 (ABI1)和ABI2是植物激素ABA的共受体。研究表明,ABI1/2上多个氨基酸的磷酸化增强了它们抑制植物ABA信号的能力。然而,目前尚不清楚是否存在一种机制来调节ABI1/2的去磷酸化,从而增强植物对ABA的敏感性。在这项研究中,我们发现了两个蛋白磷酸酶,称为ABI1去磷酸化E枝PP2C 1 (ADEP1)和ADEP2,它们与ABI1/2相互作用。缺乏ADEP1、ADEP2或两者(ADEP1 /2)的突变体对aba抑制的种子萌发、根生长和aba诱导的气孔关闭的敏感性降低。此外,与野生型相比,aba诱导的ABI5蛋白积累和下游靶基因的表达在apdep1 /2突变体中减少。这些结果表明,ADEP1/2在ABA信号通路中起着积极的调节作用。质谱分析和双向电泳鉴定Ser117是aba诱导的ABI1蛋白磷酸化的主要位点。ADEP1/2可以使Ser117去磷酸化,导致ABI1蛋白不稳定,增加植物对ABA的敏感性。此外,ABA处理降低了ADEP1/2蛋白的丰度。总的来说,我们的研究发现了两个新的调节ABA信号的调节蛋白,并为微调植物ABA反应的调节网络提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two E-clade Protein Phosphatase 2Cs enhance ABA signaling by dephosphorylating ABI1 in Arabidopsis.

ABA INSENSITIVE 1 (ABI1) and ABI2 are co-receptors of the phytohormone abscisic acid (ABA). Studies have demonstrated that phosphorylation of multiple amino acids on ABI1/2 augments their ability to inhibit ABA signaling in planta. However, it is currently unknown whether there exists a mechanism to regulate the dephosphorylation of ABI1/2 that enhances the plant's sensitivity to ABA. In this study, we identified two protein phosphatases, designated ABI1 Dephosphorylating E clade PP2C 1 (ADEP1) and ADEP2, that interact with ABI1/2. Mutants lacking ADEP1, ADEP2, or both (adep1/2) exhibited reduced sensitivity to ABA-inhibited seed germination, root growth and ABA-induced stomatal closure. Additionally, ABA-induced accumulation of ABI5 protein and the expression of downstream target genes were reduced in the adep1/2 mutant compared to the wild-type. These findings suggest that ADEP1/2 function as positive regulators of the ABA signaling pathway. Mass spectrometry analysis and two-dimensional electrophoresis identified Ser117 as a major ABA-induced phosphorylation site on ABI1 protein. ADEP1/2 can dephosphorylate Ser117, leading to the destabilization of ABI1 protein and increased sensitivity to ABA in plants. Moreover, ABA treatment decreases the abundance of ADEP1/2 proteins. Overall, our study discovers two novel regulatory proteins that modulate ABA signaling and provides new insights into the regulatory network that fine-tune plant ABA responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信