Molecular PlantPub Date : 2025-03-03Epub Date: 2025-01-19DOI: 10.1016/j.molp.2025.01.014
Seol Ki Paeng, Seong Dong Wi, Ho Byoung Chae, Su Bin Bae, Kieu Anh Thi Phan, Min Gab Kim, Dae-Jin Yun, Woe-Yeon Kim, C Robertson McClung, Sang Yeol Lee
{"title":"NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells.","authors":"Seol Ki Paeng, Seong Dong Wi, Ho Byoung Chae, Su Bin Bae, Kieu Anh Thi Phan, Min Gab Kim, Dae-Jin Yun, Woe-Yeon Kim, C Robertson McClung, Sang Yeol Lee","doi":"10.1016/j.molp.2025.01.014","DOIUrl":"10.1016/j.molp.2025.01.014","url":null,"abstract":"<p><p>The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. In this study, we reveal that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose. In NTRC-deficient ntrc mutants, the perturbed temporal dynamics of cytosolic metabolite pools substantially attenuate the amplitude of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) mRNA oscillation while maintaining its inherent periodicity. In contrast, these fluctuations extend the period and greatly reduced the amplitude of GIGANTEA (GI). In alignment with its regulatory role, the chloroplast redox rhythm and TTFL-driven nuclear oscillators are severely disrupted in ntrc plants. The impairements are rescued by NTRC expression but not by the expression of catalytically inactive NTRC(C/S) mutant, indicating that NTRC's redox activity is essential for synchronizing intracellular circadian rhythms. In return, the canonical nuclear clock component, TIMING OF CAB EXPRESSION 1 (TOC1), regulates the diel chloroplast redox rhythm by controlling NTRC expression, as evidenced by the redox cycle of chloroplast 2-Cys peroxiredoxins. This reciprocal regulation suggests a tight coupling between chloroplast redox rhythms and nuclear oscillators. Collectively, our study has identified NTRC as a key circadian modulator, elucidating the intricate connection between the metabolite-dependent chloroplast redox rhythm and the temporal dynamics of nuclear canonical clocks.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"468-484"},"PeriodicalIF":17.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Near-complete assembly and comprehensive annotation of the wheat Chinese Spring genome.","authors":"Zijian Wang, Lingfeng Miao, Kaiwen Tan, Weilong Guo, Beibei Xin, Rudi Appels, Jizeng Jia, Jinsheng Lai, Fei Lu, Zhongfu Ni, Xiangdong Fu, Qixin Sun, Jian Chen","doi":"10.1016/j.molp.2025.02.002","DOIUrl":"10.1016/j.molp.2025.02.002","url":null,"abstract":"<p><p>A complete reference genome assembly is crucial for biological research and genetic improvement. Owing to its large size and highly repetitive nature, there are numerous gaps in the globally used wheat Chinese Spring (CS) genome assembly. In this study, we generated a 14.46 Gb near-complete assembly of the CS genome, with a contig N50 of over 266 Mb and an overall base accuracy of 99.9963%. Among the 290 gaps that remained (26, 257, and 7 gaps from the A, B, and D subgenomes, respectively), 278 were extremely high-copy tandem repeats, whereas the remaining 12 were transposable-element-associated gaps. Four chromosome assemblies were completely gap-free, including chr1D, chr3D, chr4D, and chr5D. Extensive annotation of the near-complete genome revealed 151 405 high-confidence genes, of which 59 180 were newly annotated, including 7602 newly assembled genes. Except for the centromere of chr1B, which has a gap associated with superlong GAA repeat arrays, the centromeric sequences of all of the remaining 20 chromosomes were completely assembled. Our near-complete assembly revealed that the extent of tandem repeats, such as simple-sequence repeats, was highly uneven among different subgenomes. Similarly, the repeat compositions of the centromeres also varied among the three subgenomes. With the genome sequences of all six types of seed storage proteins (SSPs) fully assembled, the expression of ω-gliadin was found to be contributed entirely by the B subgenome, whereas the expression of the other five types of SSPs was most abundant from the D subgenome. The near-complete CS genome will serve as a valuable resource for genomic and functional genomic research and breeding of wheat as well as its related species.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-02-03Epub Date: 2024-12-17DOI: 10.1016/j.molp.2024.12.009
Congcong Jiang, Jinhong Kan, Guangqi Gao, Christoph Dockter, Chengdao Li, Wenxue Wu, Ping Yang, Nils Stein
{"title":"Barley2035: A decadal vision for barley research and breeding.","authors":"Congcong Jiang, Jinhong Kan, Guangqi Gao, Christoph Dockter, Chengdao Li, Wenxue Wu, Ping Yang, Nils Stein","doi":"10.1016/j.molp.2024.12.009","DOIUrl":"10.1016/j.molp.2024.12.009","url":null,"abstract":"<p><p>Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in human civilization and has been widely dispersed across the globe to support human society as a livestock feed and a raw material for the brewing industries. Since the early half of the 20th century, it has been used for innovative research on cytogenetics, biochemistry, and genetics, facilitated by its mode of reproduction through self-pollination and its true diploid status, which have contributed to the accumulation of numerous germplasm and mutant resources. In the era of molecular genomics and biology, a multitude of barley genes and their related regulatory mechanisms have been identified and functionally validated, providing a paradigm for equivalent studies in other Triticeae crops. This review highlights important advances on barley research over the past decade, focusing mainly on genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation-related traits, and the complex dynamics of yield and quality formation. In the coming decade, the prospect of integrating these innovations in barley research and breeding shows great promise. Barley is proposed as a reference Triticeae crop for the discovery and functional validation of new genes and the dissection of their molecular mechanisms. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-based tools and applications, is expected to promote barley improvement to efficiently meet the evolving global demands for this important crop.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"195-218"},"PeriodicalIF":17.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-02-03Epub Date: 2024-12-30DOI: 10.1016/j.molp.2024.12.015
Qinyi Ye, Chuanen Zhou, Hao Lin, Dong Luo, Divya Jain, Maofeng Chai, Zhichao Lu, Zhipeng Liu, Sonali Roy, Jiangli Dong, Zeng-Yu Wang, Tao Wang
{"title":"Medicago2035: Genomes, functional genomics, and molecular breeding.","authors":"Qinyi Ye, Chuanen Zhou, Hao Lin, Dong Luo, Divya Jain, Maofeng Chai, Zhichao Lu, Zhipeng Liu, Sonali Roy, Jiangli Dong, Zeng-Yu Wang, Tao Wang","doi":"10.1016/j.molp.2024.12.015","DOIUrl":"10.1016/j.molp.2024.12.015","url":null,"abstract":"<p><p>Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"219-244"},"PeriodicalIF":17.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142915301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-02-03Epub Date: 2025-01-17DOI: 10.1016/j.molp.2025.01.012
Hai-Jun Liu, Jie Liu, Zhiwen Zhai, Mingqiu Dai, Feng Tian, Yongrui Wu, Jihua Tang, Yanli Lu, Haiyang Wang, David Jackson, Xiaohong Yang, Feng Qin, Mingliang Xu, Alisdair R Fernie, Zuxin Zhang, Jianbing Yan
{"title":"Maize2035: A decadal vision for intelligent maize breeding.","authors":"Hai-Jun Liu, Jie Liu, Zhiwen Zhai, Mingqiu Dai, Feng Tian, Yongrui Wu, Jihua Tang, Yanli Lu, Haiyang Wang, David Jackson, Xiaohong Yang, Feng Qin, Mingliang Xu, Alisdair R Fernie, Zuxin Zhang, Jianbing Yan","doi":"10.1016/j.molp.2025.01.012","DOIUrl":"10.1016/j.molp.2025.01.012","url":null,"abstract":"<p><p>Maize, a cornerstone of global food security, has undergone remarkable transformations through breeding, yet further increase in global maize production faces mounting challenges in a changing world. In this Perspective paper, we overview the historical successes of maize breeding that laid the foundation for present opportunities. We examine both the specific and shared breeding goals related to diverse geographies and end-use demands. Achieving these coordinated breeding objectives requires a holistic approach to trait improvement for sustainable agriculture. We discuss cutting-edge solutions, including multi-omics approaches from single-cell analysis to holobionts, smart breeding with advanced technologies and algorithms, and the transformative potential of rational design with synthetic biology approaches. A transition toward a data-driven future is currently underway, with large-scale precision agriculture and autonomous systems poised to revolutionize farming practice. Realizing these futuristic opportunities hinges on collaborative efforts spanning scientific discoveries, technology translations, and socioeconomic considerations in maximizing human and environmental well-being.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"313-332"},"PeriodicalIF":17.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143008774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design.","authors":"Yingyin Yao, Weilong Guo, Jinying Gou, Zhaorong Hu, Jie Liu, Jun Ma, Yuan Zong, Mingming Xin, Wei Chen, Qiang Li, Zihao Wang, Ruijie Zhang, Cristobal Uauy, Faheem Shehzad Baloch, Zhongfu Ni, Qixin Sun","doi":"10.1016/j.molp.2025.01.005","DOIUrl":"10.1016/j.molp.2025.01.005","url":null,"abstract":"<p><p>Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"272-297"},"PeriodicalIF":17.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-02-03Epub Date: 2025-01-21DOI: 10.1016/j.molp.2025.01.010
Wang Kun, He Shoupu, Zhu Yuxian
{"title":"Cotton2035: From genomics research to optimized breeding.","authors":"Wang Kun, He Shoupu, Zhu Yuxian","doi":"10.1016/j.molp.2025.01.010","DOIUrl":"10.1016/j.molp.2025.01.010","url":null,"abstract":"<p><p>Cotton is the world's most important natural fiber crop and serves as an ideal model for studying plant genome evolution, cell differentiation, elongation, and cell wall biosynthesis. The first draft genome assembly for Gossypium raimondii, completed in 2012, marked the beginning of global efforts in studying cotton genomics. Over the past decade, the cotton research community has continued to assemble and refine the genomes for both wild and cultivated Gossypium species. With the accumulation of de novo genome assemblies and resequencing data across virous cotton populations, significant progress has been made in uncovering the genetic basis of key agronomic traits. Achieving the goal of cotton genomics-to-breeding (G2B) will require a deeper understanding of the spatiotemporal regulatory mechanisms involved in genome information storage and expression. We advocate for a cotton ENCODE project to systematically decode the functional elements and regulatory networks within the cotton genome. Technological advances, particularly on single-cell sequencing and high-resolution spatiotemporal omics, will be essential for elucidating these regulatory mechanisms. By integrating multi-omics data, genome editing tools, and artificial intelligence, these efforts will empower the genomics-driven strategies needed for future cotton G2B breeding.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"298-312"},"PeriodicalIF":17.1,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}