Molecular Plant最新文献

筛选
英文 中文
Targeted Protein Degradation and Protein-condensate Degradation for Plant Science and Crop Breeding. 靶向蛋白降解和凝析蛋白降解在植物科学和作物育种中的应用。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2025-06-25 DOI: 10.1016/j.molp.2025.06.013
Ruixia Niu, Ming Luo, Qing Wen, Yifan Xiong, Hua Dang, Guoyong Xu
{"title":"Targeted Protein Degradation and Protein-condensate Degradation for Plant Science and Crop Breeding.","authors":"Ruixia Niu, Ming Luo, Qing Wen, Yifan Xiong, Hua Dang, Guoyong Xu","doi":"10.1016/j.molp.2025.06.013","DOIUrl":"https://doi.org/10.1016/j.molp.2025.06.013","url":null,"abstract":"<p><p>Gene expression can be modulated at the DNA, RNA, or protein level, with targeted protein degradation (TPD) representing a well-established and effective strategy for directly manipulating protein function. TPD enables selective elimination of proteins, protein condensates or organelles by co-opting cellular degradation pathways-such as the ubiquitin-proteasome system, autophagy, or endocytosis-via induced proximity mechanisms. While TPD has had transformative impacts in biomedical research over the past two decades, its application in plant science has lagged behind. This gap stems from the sequential dominance of RNA interference and CRISPR technologies, as well as the complexity and cost of implementing chemical, macromolecular, and recombinant degrader platforms in plants. The recent development of genetically encoded chimeric protein degraders (GE-CPDs) offers a timely and promising alternative. These transgene-based systems provide a plant-adaptable, precise, tunable, and conditional means to control endogenous protein levels, opening new avenues for studying dynamic biological processes and engineering complex traits in crops. As genome engineering technologies continue to advance, GE-CPDs are poised to become a versatile and scalable platform for both basic plant biology and agricultural innovation. In this review, we highlight five key opportunities-Selective-Targeting, Co-Targeting, Organelle-Targeting, Conditional-Targeting, and Synthetic-Engineering (SCOCS)-that illustrate the emerging importance of TPD technologies, particularly GE-CPDs, in advancing plant science. We argue that the field is now well-positioned to harness the full potential of TPD for next-generation crop improvement.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144497530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methionine Metabolism and Biofortification in Maize: regulatory Networks and Genetic Strategies. 玉米蛋氨酸代谢和生物强化:调控网络和遗传策略。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2025-06-25 DOI: 10.1016/j.molp.2025.06.014
Rachel Amir
{"title":"Methionine Metabolism and Biofortification in Maize: regulatory Networks and Genetic Strategies.","authors":"Rachel Amir","doi":"10.1016/j.molp.2025.06.014","DOIUrl":"https://doi.org/10.1016/j.molp.2025.06.014","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144506874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of TaHDA8-mediated lysine deacetylation of TaAREB3 acts as a drought adaptive mechanism in wheat root development 抑制tahda8介导的TaAREB3赖氨酸去乙酰化是小麦根系发育的干旱适应机制
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2025-06-21 DOI: 10.1016/j.molp.2025.06.012
Zehui Liu, Qun Yang, Xingbei Liu, Jinpeng Li, Lei Zhang, Wei Chu, Jingchen Lin, Debiao Liu, Danyang Zhao, Xiao Peng, Chaowu Zeng, Mingming Xin, Yingyin Yao, Huiru Peng, Zhongfu Ni, Qixin Sun, Zhaorong Hu
{"title":"Suppression of TaHDA8-mediated lysine deacetylation of TaAREB3 acts as a drought adaptive mechanism in wheat root development","authors":"Zehui Liu, Qun Yang, Xingbei Liu, Jinpeng Li, Lei Zhang, Wei Chu, Jingchen Lin, Debiao Liu, Danyang Zhao, Xiao Peng, Chaowu Zeng, Mingming Xin, Yingyin Yao, Huiru Peng, Zhongfu Ni, Qixin Sun, Zhaorong Hu","doi":"10.1016/j.molp.2025.06.012","DOIUrl":"https://doi.org/10.1016/j.molp.2025.06.012","url":null,"abstract":"Wheat root systems undergo dynamic and adaptive changes to mitigate the adverse effects through elaborate regulatory mechanisms under drought stress. Elucidating and utilizing these mechanisms is highly important for breeding drought resistant wheat varieties. Here, we identify histone deacetylase TaHDA8, as a critical component in regulating wheat root elongation and drought resistance. Under drought stress, TaHDA8 can be finely tuned to alleviate its inhibition of root elongation, thereby adapting to water deficit. Interestingly, the reduction in TaHDA8 protein levels restores the DNA-binding ability of TaAREB3, a positive regulator of root elongation and drought resistance, which depends on the retention of acetylation at K248 and K281 residues. The restored DNA-binding ability of TaAREB3 activates the expression of <ce:italic>TaKOR1</ce:italic>, thus promoting root elongation by regulating cell proliferation in the root meristem. Further studies reveal that natural variations in the <ce:italic>TaKOR1</ce:italic> promoter determine the differences in TaAREB3 binding, and wheat germplasm with TaHDA8-TaAREB3-TaKOR1 regulatory module has been widely selected. Overall, this study reveals how lysine deacetylases regulate drought-responsive root development via non-histone deacetylation, providing genetic resources for improving root architecture and breeding drought-resistant wheat.","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"47 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144337742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic and Population Evidence Uncovers Divergent Improvement of Vegetable Soybean from Grain Soybean 基因组和种群证据揭示菜用大豆与籽粒大豆的差异改良
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2025-06-20 DOI: 10.1016/j.molp.2025.06.009
Na Liu, Wanjie Feng, Guwen Zhang, Pengfei Gao, Lijie Lian, Jing Yuan, Xuantong Liu, Xiaoyu Ni, Huaying Wang, Jinwen Ou, Yaming Gong, Xutong Wang
{"title":"Genomic and Population Evidence Uncovers Divergent Improvement of Vegetable Soybean from Grain Soybean","authors":"Na Liu, Wanjie Feng, Guwen Zhang, Pengfei Gao, Lijie Lian, Jing Yuan, Xuantong Liu, Xiaoyu Ni, Huaying Wang, Jinwen Ou, Yaming Gong, Xutong Wang","doi":"10.1016/j.molp.2025.06.009","DOIUrl":"https://doi.org/10.1016/j.molp.2025.06.009","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"147 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144337744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From non-coding to chromatin regulators: VIVIpary and the rise of lncRNAs in plant biology 从非编码到染色质调节因子:植物生物学中的viviparty和lncrna的兴起
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2025-06-19 DOI: 10.1016/j.molp.2025.06.011
Pablo Mammi, Thomas Blein
{"title":"From non-coding to chromatin regulators: VIVIpary and the rise of lncRNAs in plant biology","authors":"Pablo Mammi, Thomas Blein","doi":"10.1016/j.molp.2025.06.011","DOIUrl":"https://doi.org/10.1016/j.molp.2025.06.011","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"18 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144337750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural insights of gibberellin-mediated DELLA protein degradation 赤霉素介导的DELLA蛋白降解的结构见解
IF 27.5 1区 生物学
Molecular Plant Pub Date : 2025-06-19 DOI: 10.1016/j.molp.2025.06.010
Soyaab Islam, Kunwoong Park, Jing Xia, Eunju Kwon, Dong Young Kim
{"title":"Structural insights of gibberellin-mediated DELLA protein degradation","authors":"Soyaab Islam, Kunwoong Park, Jing Xia, Eunju Kwon, Dong Young Kim","doi":"10.1016/j.molp.2025.06.010","DOIUrl":"https://doi.org/10.1016/j.molp.2025.06.010","url":null,"abstract":"Gibberellin promotes plant growth by downregulating DELLA proteins, which act as growth repressors. In the presence of gibberellin, the gibberellin receptor GID1 binds to DELLA proteins, triggering their degradation through polyubiquitination by the SCF<ce:sup loc=\"post\">SLY1/GID2</ce:sup> ubiquitin E3 ligase. Despite extensive studies, the molecular mechanisms by which DELLA proteins assemble with SCF<ce:sup loc=\"post\">SLY1/GID2</ce:sup> to regulate plant growth remain poorly understood. Here, we present two cryo-electron microscopy structures of the <ce:italic>Arabidopsis thaliana</ce:italic> DELLA protein RGA in complex with GID1A and GID1A-SLY1-ASK2, respectively. Structural analyses revealed that RGA interacts with GID1A and SLY1 through nonoverlapping binding surfaces, stabilizing the proteins. This suggests that the SCF<ce:sup loc=\"post\">SLY1</ce:sup>-RGA-GID1A complex assembles through a stepwise stabilization process induced by gibberellin. Furthermore, structural comparison with GRAS proteins indicates that RGA does not interact with IDD family transcription factors when bound to SLY1, suggesting that DELLA protein binding to GID1/SLY1 and to transcription factors is mutually exclusive. These findings provide insights into the gibberellin-mediated regulation of transcription factor activity by DELLA proteins.","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"25 1","pages":""},"PeriodicalIF":27.5,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144337741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature regulation of CLAVATA3 arabinosylation. CLAVATA3阿拉伯糖基化的温度调控。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2025-06-18 DOI: 10.1016/j.molp.2025.06.008
Vincent E Cerbantez-Bueno, G Venugopala Reddy
{"title":"Temperature regulation of CLAVATA3 arabinosylation.","authors":"Vincent E Cerbantez-Bueno, G Venugopala Reddy","doi":"10.1016/j.molp.2025.06.008","DOIUrl":"10.1016/j.molp.2025.06.008","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144333540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root bacteria fine-tune rice tillering through phytohormone interference and mimicry. 根菌通过植物激素干扰和模仿调控水稻分蘖。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2025-06-16 DOI: 10.1016/j.molp.2025.06.006
Esteban Veliz, Venkatesan Sundaresan
{"title":"Root bacteria fine-tune rice tillering through phytohormone interference and mimicry.","authors":"Esteban Veliz, Venkatesan Sundaresan","doi":"10.1016/j.molp.2025.06.006","DOIUrl":"10.1016/j.molp.2025.06.006","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144317513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BAI1: A plant transcription factor governing nuclear and plastid gene expression. 调控核质体基因表达的植物转录因子BAI1
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2025-06-16 DOI: 10.1016/j.molp.2025.06.005
Nicolaj Jeran, Simona Masiero, Paolo Pesaresi
{"title":"BAI1: A plant transcription factor governing nuclear and plastid gene expression.","authors":"Nicolaj Jeran, Simona Masiero, Paolo Pesaresi","doi":"10.1016/j.molp.2025.06.005","DOIUrl":"10.1016/j.molp.2025.06.005","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144294138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pan-genome and haplotype map of cassava cultivars and wild ancestors provide insights into its adaptive evolution and domestication. 木薯品种和野生祖先的全基因组和单倍型图谱为其适应进化和驯化提供了新的思路。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2025-06-02 Epub Date: 2025-05-27 DOI: 10.1016/j.molp.2025.05.014
Zhiqiang Xia, Zhenglin Du, Xincheng Zhou, Sirong Jiang, Tingting Zhu, Le Wang, Fei Chen, Luiz Carvalho, Meiling Zou, Luis Augusto Becerra Lopez-Lavalle, Xiaofei Zhang, Liangye Xu, Zhenyu Wang, Meili Chen, Xin Guo, Shujuan Wang, Mengtao Li, Yuanchao Li, Haiyan Wang, Shisheng Liu, Yuting Bao, Long Zhao, Chenji Zhang, Jianjia Xiao, Fengguang Guo, Xu Shen, Haozheng Li, Cheng Lu, Fei Qiao, Hernan Ceballos, Huabing Yan, Xiaochun Qin, Ling Ma, Huaifang Zhang, Shuang He, Wenming Zhao, Yinglang Wan, Yinhua Chen, Dongyi Huang, Kaimian Li, Bin Liu, Ming Peng, Weixiong Zhang, Birger Lindberg Møller, Xin Chen, Ming-Cheng Luo, Jingfa Xiao, Wenquan Wang
{"title":"Pan-genome and haplotype map of cassava cultivars and wild ancestors provide insights into its adaptive evolution and domestication.","authors":"Zhiqiang Xia, Zhenglin Du, Xincheng Zhou, Sirong Jiang, Tingting Zhu, Le Wang, Fei Chen, Luiz Carvalho, Meiling Zou, Luis Augusto Becerra Lopez-Lavalle, Xiaofei Zhang, Liangye Xu, Zhenyu Wang, Meili Chen, Xin Guo, Shujuan Wang, Mengtao Li, Yuanchao Li, Haiyan Wang, Shisheng Liu, Yuting Bao, Long Zhao, Chenji Zhang, Jianjia Xiao, Fengguang Guo, Xu Shen, Haozheng Li, Cheng Lu, Fei Qiao, Hernan Ceballos, Huabing Yan, Xiaochun Qin, Ling Ma, Huaifang Zhang, Shuang He, Wenming Zhao, Yinglang Wan, Yinhua Chen, Dongyi Huang, Kaimian Li, Bin Liu, Ming Peng, Weixiong Zhang, Birger Lindberg Møller, Xin Chen, Ming-Cheng Luo, Jingfa Xiao, Wenquan Wang","doi":"10.1016/j.molp.2025.05.014","DOIUrl":"10.1016/j.molp.2025.05.014","url":null,"abstract":"<p><p>Cassava is a highly resilient tropical crop that produces large, starchy storage roots and high biomass. However, how did cassava's remarkable environmental adaptability and key economic traits evolve from its wild species remain unclear. In this study, we obtained near complete telomere-to-telomere genome assemblies and their haplotype forms for the cultivar AM560, the wild ancestors FLA4047 and W14, constructed a graphic pan-genome of 30 representatives with a size of 1.15 Gb, and built a clarified evolutionary tree of 486 accessions. A comparison of structural variations and single-nucleotide variations between the ancestors and cultivated cassavas reveals predominant expansions and contractions of numbers of genes and gene families, which are mainly driven by transposons. Significant selective sweeping occurred in 122 footprints of genomes and affects 1,519 domesticated genes. We identify selective mutations in MeCSK and MeFNR2 that could promote photoreactions associated with MeNADP-ME in C<sub>4</sub> photosynthesis in modern cassava. Coevolution of retard floral primordia and initiation of storage roots may arise from MeCOL5 variants with altered bindings to MeFT1, MeFT2, and MeTFL2. Mutations in MeMATE1 and MeGTR occur in sweet cassava, and MeAHL19 has evolved to regulate the biosynthesis, transport, and endogenous remobilization of cyanogenic glucosides in cassava. These extensive genomic and gene resources provided here, along with the findings on the evolutionary mechanisms responsible for beneficial traits in modern cultivars, lay a strong foundation for future breeding improvements of cassava.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1047-1071"},"PeriodicalIF":17.1,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144174190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信