{"title":"病原菌劫持选择性剪接重组植物免疫:OsRBP11/OsNPR3在水稻中被发现为新的脆弱性。","authors":"Yufeng Xu, Mian Zhou","doi":"10.1016/j.molp.2025.08.020","DOIUrl":null,"url":null,"abstract":"<p><p>In the intricate molecular warfare between plants and pathogens, bacteria deploy sophisticated strategies to subvert host defenses. Xanthomonas oryzae pathogens, which cause devastating bacterial blight (BB) and bacterial leaf streak (BLS) in rice, utilize transcription activator-like effectors (TALEs) to manipulate host gene expression. Secreted by the type III secretion system and translocated by the type III translocon into host cells, TALEs directly bind specific DNA sequences (effector-binding elements, EBEs) in the 5'-terminal untranslated regions (UTRs) or within the promoter regions of host genes to activate transcription of these genes, including SWEETs sugar transporters and negative regulators of plant immunity (Xue et al., 2021). Identifying novel target genes of TALEs will advance our understanding of plant-pathogen co-evolution.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":24.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathogens hijack alternative splicing to rewire plant immunity: OsRBP11/OsNPR3 uncovered as a new vulnerability in rice.\",\"authors\":\"Yufeng Xu, Mian Zhou\",\"doi\":\"10.1016/j.molp.2025.08.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the intricate molecular warfare between plants and pathogens, bacteria deploy sophisticated strategies to subvert host defenses. Xanthomonas oryzae pathogens, which cause devastating bacterial blight (BB) and bacterial leaf streak (BLS) in rice, utilize transcription activator-like effectors (TALEs) to manipulate host gene expression. Secreted by the type III secretion system and translocated by the type III translocon into host cells, TALEs directly bind specific DNA sequences (effector-binding elements, EBEs) in the 5'-terminal untranslated regions (UTRs) or within the promoter regions of host genes to activate transcription of these genes, including SWEETs sugar transporters and negative regulators of plant immunity (Xue et al., 2021). Identifying novel target genes of TALEs will advance our understanding of plant-pathogen co-evolution.</p>\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":24.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.08.020\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.08.020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在植物和病原体之间复杂的分子战争中,细菌采用复杂的策略来破坏宿主的防御。水稻黄单胞菌(Xanthomonas oryzae)是引起水稻细菌性白叶枯病(BB)和细菌性条纹病(BLS)的病原菌,利用转录激活因子样效应物(transcription activator-like effators, TALEs)操纵宿主基因表达。TALEs由III型分泌系统分泌,由III型转座易位到宿主细胞中,直接结合宿主基因5'端非翻译区(utr)或启动子区域内的特定DNA序列(效应结合元件,EBEs),激活这些基因的转录,包括糖转运蛋白和植物免疫的负调节因子(Xue et al., 2021)。发现新的靶基因将促进我们对植物-病原体共同进化的理解。
Pathogens hijack alternative splicing to rewire plant immunity: OsRBP11/OsNPR3 uncovered as a new vulnerability in rice.
In the intricate molecular warfare between plants and pathogens, bacteria deploy sophisticated strategies to subvert host defenses. Xanthomonas oryzae pathogens, which cause devastating bacterial blight (BB) and bacterial leaf streak (BLS) in rice, utilize transcription activator-like effectors (TALEs) to manipulate host gene expression. Secreted by the type III secretion system and translocated by the type III translocon into host cells, TALEs directly bind specific DNA sequences (effector-binding elements, EBEs) in the 5'-terminal untranslated regions (UTRs) or within the promoter regions of host genes to activate transcription of these genes, including SWEETs sugar transporters and negative regulators of plant immunity (Xue et al., 2021). Identifying novel target genes of TALEs will advance our understanding of plant-pathogen co-evolution.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.