NPR3的靶向降解使小麦具有广谱抗性。

IF 24.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Mingxi Zhou, Zhonglin Mou
{"title":"NPR3的靶向降解使小麦具有广谱抗性。","authors":"Mingxi Zhou, Zhonglin Mou","doi":"10.1016/j.molp.2025.09.004","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":24.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted degradation of NPR3 confers broad-spectrum resistance in wheat.\",\"authors\":\"Mingxi Zhou, Zhonglin Mou\",\"doi\":\"10.1016/j.molp.2025.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":19012,\"journal\":{\"name\":\"Molecular Plant\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":24.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Plant\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molp.2025.09.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.09.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

植物免疫系统依赖于激活和抑制之间精确平衡的相互作用,以有效地对抗病原体而不引起自我伤害。水杨酸(SA)信号通路是该系统的基石,目前正在经历研究复兴。具有里程碑意义的研究最近阐明了从choris酸盐和苯丙氨酸合成SA的完整酶促途径(Liu et al., 2025; Wang et al., 2025; Zhu et al., 2025),而结构生物学的进展已经解决了关键信号成分的原子水平结构(Kumar et al., 2022)。这个网络的核心是由致病相关基因的非表达者编码的NPR蛋白。在这个家族中,NPR1是防御基因的主要转录共激活因子。相反,其类似物NPR3和NPR4作为转录共抑制因子,可减弱应答,防止异常免疫激活和相关资源分配(Ding et al., 2018)。这些调节蛋白的动态周转是免疫稳态的基础,但控制抑制物降解的专用机制仍然部分难以捉摸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted degradation of NPR3 confers broad-spectrum resistance in wheat.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信