Molecular PlantPub Date : 2025-03-25DOI: 10.1016/j.molp.2025.03.013
Iqra Noor, Hamza Sohail, Biao Jin, Changquan Zhang
{"title":"Low-cadmium rice for food safety: OsCS1 is a genetic breakthrough.","authors":"Iqra Noor, Hamza Sohail, Biao Jin, Changquan Zhang","doi":"10.1016/j.molp.2025.03.013","DOIUrl":"https://doi.org/10.1016/j.molp.2025.03.013","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143720449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-03-21DOI: 10.1016/j.molp.2025.03.012
Alisdair R Fernie, Mustafa Bulut
{"title":"SPOTLIGHT: Design of future climate smart crops by engineering heat stress-responsive gene expression.","authors":"Alisdair R Fernie, Mustafa Bulut","doi":"10.1016/j.molp.2025.03.012","DOIUrl":"https://doi.org/10.1016/j.molp.2025.03.012","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic transcriptome and GWAS uncover that a hydroxyproline-rich glycoprotein suppresses Agrobacterium-mediated transformation in maize.","authors":"Min Liu, Yan Yang, Tianhu Liang, Fengxia Hou, Minyan Zhang, Shijiang He, Peng Liu, Chaoying Zou, Langlang Ma, Guangtang Pan, Yaou Shen","doi":"10.1016/j.molp.2025.03.011","DOIUrl":"https://doi.org/10.1016/j.molp.2025.03.011","url":null,"abstract":"<p><p>Genetic transformation is a crucial tool for investigating gene function and advancing molecular breeding in crops, with Agrobacterium tumefaciens-mediated transformation being the primary method for plant genetic modification. However, this approach exhibits significant genotypic dependence in maize. Therefore, to overcome these limitations, we herein combined dynamic transcriptome analysis and genome-wide association study (GWAS) to identify the key genes controlling Agrobacterium infection frequency (AIF) in immature maize embryos. Transcriptome analysis of Agrobacterium-infected embryos uncovered 8483 and 1580 genotype-specific response genes in 18-599R (low AIF) and A188 (high AIF), respectively. A weighted gene co-expression network analysis (WGCNA) further revealed five and seven stage-specific co-expression modules in each corresponding line. Basd on a self-developed AIF quantitation method, the GWAS revealed 30 AIF-associated single nucleotide polymorphisms and 315 candidate genes under multiple environments. Integration of GWAS and WGCNA further identified 12 key genes associated with high AIF in A188, among which, ZmHRGP, encoding a hydroxyproline-rich glycoprotein, was functionally validated as a key factor of AIF in immature embryos. Knockout of ZmHRGP further enabled to establish a high-efficiency genetic transformation system for the 18-599R line, with the transformation frequency being approximately 80%. Moreover, transient reduction of ZmHRGP expression significantly enhanced the AIF of maize calluses and leaves. Overall, these findings advance our understanding of plant factors controlling Agrobacterium infection and contribute to the development of more efficient Agrobacterium-mediated transformation systems in crops.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143670533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-03-14DOI: 10.1016/j.molp.2025.03.009
Hongyuan Zheng, Yu Wang, Xuemin Zhou, Daowen Wang, Shi Xiao, Zheng Qing Fu
{"title":"Propagation of plant immunity via interactions between PRIMER and bystander cells.","authors":"Hongyuan Zheng, Yu Wang, Xuemin Zhou, Daowen Wang, Shi Xiao, Zheng Qing Fu","doi":"10.1016/j.molp.2025.03.009","DOIUrl":"10.1016/j.molp.2025.03.009","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular PlantPub Date : 2025-03-13DOI: 10.1016/j.molp.2025.03.008
Soohyun Oh, Doil Choi
{"title":"Single-plant NLR is able to recognize effectors from a wide range of adapted and non-adapted pathogens.","authors":"Soohyun Oh, Doil Choi","doi":"10.1016/j.molp.2025.03.008","DOIUrl":"10.1016/j.molp.2025.03.008","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143634241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DNA damage triggers heritable alterations in DNA methylation patterns in Arabidopsis.","authors":"Jinchao Li, Wenjie Liang, Xin-Qiang He, Weiqiang Qian","doi":"10.1016/j.molp.2025.01.019","DOIUrl":"10.1016/j.molp.2025.01.019","url":null,"abstract":"<p><p>It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. In this study, we demonstrated that DNA single-strand breaks with 3' blocked ends (DNA 3' blocks) not only can reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants. The CG and CHG hypermethylation tend to localize within gene bodies, with a significant proportion being de novo generated. In contrast, the CHH hypermethylation is concentrated in centromeric and pericentromeric regions, primarily being reinforced methylation. Mechanistically, DNA 3' blocks regulate the DREAM complex to induce CG and CHG methylation. Moreover, they utilize the RdDM pathway to induce CHH hypermethylation. Intriguingly, repair of DNA damage or blocking the DNA damage response can fully abolish CHH hypermethylation and partially rescue CHG hypermethylation but rarely alter CG hypermethylation, indicating that DNA damage-induced symmetric DNA methylation can serve as a form of genetic imprinting. Collectively, these results suggest that DNA damage is an important force driving the emergence and evolution of genomic DNA methylation levels and patterns in plants.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"501-512"},"PeriodicalIF":17.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143040166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The plant retromer components SNXs bind to ATG8 and CLASP to mediate autophagosome movement along microtubules.","authors":"Yanglan Liao, Xibao Li, Wenlong Ma, Xinyi Lin, Jiayi Kuang, Xuanang Zheng, Zien Li, Fanfan Qiao, Chuanliang Liu, Jun Zhou, Faqiang Li, Ruixi Li, Byung-Ho Kang, Hongbo Li, Caiji Gao","doi":"10.1016/j.molp.2024.12.013","DOIUrl":"10.1016/j.molp.2024.12.013","url":null,"abstract":"<p><p>In eukaryotic cells, autophagosomes are double-membrane vesicles that are highly mobile and traffic along cytoskeletal tracks. While core autophagy-related proteins (ATGs) and other regulators involved in autophagosome biogenesis in plants have been extensively studied, the specific components regulating plant autophagosome motility remain elusive. In this study, using TurboID-based proximity labeling, we identify the retromer subcomplex comprising sorting nexin 1 (SNX1), SNX2a, and SNX2b as interacting partners of ATG8. Remarkably, SNX proteins decorate ATG8-labeled autophagosomes and facilitate their coordinated movement along microtubules. Depletion of SNX proteins restricts the motility of autophagosomes in the cytoplasm, resulting in decreased autophagic flux. Furthermore, we show that the microtubule-associated protein CLASP is a bridge, connecting the SNX-ATG8-decorated autophagosomes to the microtubules. Genetically, the clasp-1 mutant phenotype resembles that of plants with disrupted SNXs or microtubule networks, displaying diminished autophagosome motility and reduced autophagic flux. Collectively, our study unveils a hitherto unanticipated role of the SNXs subcomplex in connecting autophagosomes with microtubules to promote autophagosome mobility in Arabidopsis.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"416-436"},"PeriodicalIF":17.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}