Molecular Plant最新文献

筛选
英文 中文
Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock. 拟南芥中的光周期调节因子 CO 反馈控制昼夜节律。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-08-14 DOI: 10.1016/j.molp.2024.08.002
Abril San Martin, Marcelo Javier Yanovsky
{"title":"Arabidopsis photoperiodic regulator CONSTANS feeds back to control the circadian clock.","authors":"Abril San Martin, Marcelo Javier Yanovsky","doi":"10.1016/j.molp.2024.08.002","DOIUrl":"10.1016/j.molp.2024.08.002","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
REGENERATION FACTOR 1, a peptide boost for wound healing and plant biotechnology. 再生因子 1,一种促进伤口愈合和植物生物技术的多肽。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-07-26 DOI: 10.1016/j.molp.2024.07.012
Andreas Schaller
{"title":"REGENERATION FACTOR 1, a peptide boost for wound healing and plant biotechnology.","authors":"Andreas Schaller","doi":"10.1016/j.molp.2024.07.012","DOIUrl":"10.1016/j.molp.2024.07.012","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Too SHY 2 Repress. Too SHY 2 Repress.
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-09-02 DOI: 10.1016/j.molp.2024.09.001
Jason W Reed, Bastiaan O R Bargmann
{"title":"Too SHY 2 Repress.","authors":"Jason W Reed, Bastiaan O R Bargmann","doi":"10.1016/j.molp.2024.09.001","DOIUrl":"https://doi.org/10.1016/j.molp.2024.09.001","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142126227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort. 单细胞 RNA 测序有助于阐明圣约翰草中抗抑郁剂金丝桃素的完整生物合成过程。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-08-12 DOI: 10.1016/j.molp.2024.08.003
Song Wu, Ana Luisa Malaco Morotti, Jun Yang, Ertao Wang, Evangelos C Tatsis
{"title":"Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort.","authors":"Song Wu, Ana Luisa Malaco Morotti, Jun Yang, Ertao Wang, Evangelos C Tatsis","doi":"10.1016/j.molp.2024.08.003","DOIUrl":"10.1016/j.molp.2024.08.003","url":null,"abstract":"<p><p>Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, \"Hyper cells\", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dose-dependent bimodal switch by homologous Aux/IAA transcriptional repressors. 同源 Aux/IAA 转录抑制因子的剂量依赖性双模切换。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-08-06 DOI: 10.1016/j.molp.2024.07.014
Hyung-Taeg Cho, Minsu Lee, Hee-Seung Choi, Kwang-Ho Maeng, Kyeonghoon Lee, Ha-Yeon Lee, Anindya Ganguly, Hoonyoung Park, Chang-Hoi Ho
{"title":"A dose-dependent bimodal switch by homologous Aux/IAA transcriptional repressors.","authors":"Hyung-Taeg Cho, Minsu Lee, Hee-Seung Choi, Kwang-Ho Maeng, Kyeonghoon Lee, Ha-Yeon Lee, Anindya Ganguly, Hoonyoung Park, Chang-Hoi Ho","doi":"10.1016/j.molp.2024.07.014","DOIUrl":"10.1016/j.molp.2024.07.014","url":null,"abstract":"<p><p>Combinatorial interactions between different regulators diversify and enrich the chance of transcriptional regulation in eukaryotic cells. However, a dose-dependent functional switch of homologous transcriptional repressors has rarely been reported. Here, we show that SHY2, an auxin/indole-3-acetic acid (Aux/IAA) repressor, exhibits a dose-dependent bimodal role in auxin-sensitive root-hair growth and gene transcription in Arabidopsis, whereas other Aux/IAA homologs consistently repress the auxin responses. The co-repressor (TOPLESS [TPL])-binding affinity of a bimodal Aux/IAA was lower than that of a consistently repressing Aux/IAA. The switch of a single amino acid residue in the TPL-binding motif between the bimodal form and the consistently repressing form switched their TPL-binding affinity and transcriptional and biological roles in auxin responses. Based on these data, we propose a model whereby competition between homologous repressors with different co-repressor-binding affinities could generate a bimodal output at the transcriptional and developmental levels.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulation of photosensory and circadian signaling restricts phenotypic plasticity in response to changing environmental conditions in Arabidopsis. 操纵光感和昼夜节律信号可限制拟南芥对环境条件变化的表型可塑性。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-07-15 DOI: 10.1016/j.molp.2024.07.007
Martin William Battle, Scott Fraser Ewing, Cathryn Dickson, Joseph Obaje, Kristen N Edgeworth, Rebecca Bindbeutel, Rea L Antoniou-Kourounioti, Dmitri A Nusinow, Matthew Alan Jones
{"title":"Manipulation of photosensory and circadian signaling restricts phenotypic plasticity in response to changing environmental conditions in Arabidopsis.","authors":"Martin William Battle, Scott Fraser Ewing, Cathryn Dickson, Joseph Obaje, Kristen N Edgeworth, Rebecca Bindbeutel, Rea L Antoniou-Kourounioti, Dmitri A Nusinow, Matthew Alan Jones","doi":"10.1016/j.molp.2024.07.007","DOIUrl":"10.1016/j.molp.2024.07.007","url":null,"abstract":"<p><p>Plants exploit phenotypic plasticity to adapt their growth and development to prevailing environmental conditions. Interpretation of light and temperature signals is aided by the circadian system, which provides a temporal context. Phenotypic plasticity provides a selective and competitive advantage in nature but is obstructive during large-scale, intensive agricultural practices since economically important traits (including vegetative growth and flowering time) can vary widely depending on local environmental conditions. This prevents accurate prediction of harvesting times and produces a variable crop. In this study, we sought to restrict phenotypic plasticity and circadian regulation by manipulating signaling systems that govern plants' responses to environmental signals. Mathematical modeling of plant growth and development predicted reduced plant responses to changing environments when circadian and light signaling pathways were manipulated. We tested this prediction by utilizing a constitutively active allele of the plant photoreceptor phytochrome B, along with disruption of the circadian system via mutation of EARLY FLOWERING3. We found that these manipulations produced plants that are less responsive to light and temperature cues and thus fail to anticipate dawn. These engineered plants have uniform vegetative growth and flowering time, demonstrating how phenotypic plasticity can be limited while maintaining plant productivity. This has significant implications for future agriculture in both open fields and controlled environments.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIZ1-mediated SUMOylation of CPSF100 promotes plant thermomorphogenesis by controlling alternative polyadenylation. SIZ1介导的CPSF100的SUMOlation通过控制替代多聚腺苷酸化促进植物的热形态发生。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-07-25 DOI: 10.1016/j.molp.2024.07.011
Zhibo Yu, Jun Wang, Cheng Zhang, Qiuna Zhan, Leqian Shi, Bing Song, Danlu Han, Jieming Jiang, Junwen Huang, Xiaolin Ou, Zhonghui Zhang, Jianbin Lai, Qingshun Quinn Li, Chengwei Yang
{"title":"SIZ1-mediated SUMOylation of CPSF100 promotes plant thermomorphogenesis by controlling alternative polyadenylation.","authors":"Zhibo Yu, Jun Wang, Cheng Zhang, Qiuna Zhan, Leqian Shi, Bing Song, Danlu Han, Jieming Jiang, Junwen Huang, Xiaolin Ou, Zhonghui Zhang, Jianbin Lai, Qingshun Quinn Li, Chengwei Yang","doi":"10.1016/j.molp.2024.07.011","DOIUrl":"10.1016/j.molp.2024.07.011","url":null,"abstract":"<p><p>Under warm temperatures, plants adjust their morphologies for environmental adaption via precise gene expression regulation. However, the function and regulation of alternative polyadenylation (APA), an important fine-tuning of gene expression, remains unknown in plant thermomorphogenesis. In this study, we found that SUMOylation, a critical post-translational modification, is induced by a long-term treatment at warm temperatures via a SUMO ligase SIZ1 in Arabidopsis. Disruption of SIZ1 altered the global usage of polyadenylation signals and affected the APA dynamic of thermomorphogenesis-related genes. CPSF100, a key subunit of the CPSF complex for polyadenylation regulation, is SUMOylated by SIZ1. Importantly, we demonstrated that SUMOylation is essential for the function of CPSF100 in genome-wide polyadenylation site choice during thermomorphogenesis. Further analyses revealed that the SUMO conjugation on CPSF100 attenuates its interaction with two isoforms of its partner CPSF30, increasing the nuclear accumulation of CPSF100 for polyadenylation regulation. In summary, our study uncovers a regulatory mechanism of APA via SIZ1-mediated SUMOylation in plant thermomorphogenesis.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. Proxitome 图谱揭示了激活 NLR 介导的免疫的保守 SGT1-NSL1 信号模块。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-09-02 Epub Date: 2024-07-25 DOI: 10.1016/j.molp.2024.07.010
Dingliang Zhang, Xinxin Yang, Zhiyan Wen, Zhen Li, Xinyu Zhang, Chenchen Zhong, Jiajie She, Qianshen Zhang, He Zhang, Wenli Li, Xiaoyun Zhao, Mingliang Xu, Zhen Su, Dawei Li, Savithramma P Dinesh-Kumar, Yongliang Zhang
{"title":"Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity.","authors":"Dingliang Zhang, Xinxin Yang, Zhiyan Wen, Zhen Li, Xinyu Zhang, Chenchen Zhong, Jiajie She, Qianshen Zhang, He Zhang, Wenli Li, Xiaoyun Zhao, Mingliang Xu, Zhen Su, Dawei Li, Savithramma P Dinesh-Kumar, Yongliang Zhang","doi":"10.1016/j.molp.2024.07.010","DOIUrl":"10.1016/j.molp.2024.07.010","url":null,"abstract":"<p><p>Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade. 水杨酸信号枢纽和转录级联的下一代图谱。
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-08-22 DOI: 10.1016/j.molp.2024.08.008
Jordan Powers, Xing Zhang, Andres V Reyes, Raul Zavaliev, Roni Ochakovski, Shou-Ling Xu, Xinnian Dong
{"title":"Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade.","authors":"Jordan Powers, Xing Zhang, Andres V Reyes, Raul Zavaliev, Roni Ochakovski, Shou-Ling Xu, Xinnian Dong","doi":"10.1016/j.molp.2024.08.008","DOIUrl":"10.1016/j.molp.2024.08.008","url":null,"abstract":"<p><p>For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming ∼20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1-signaling cascade remained elusive due to difficulties in studying this transcriptional cofactor whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA synthesis, except associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70 then play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of NPR1 condensate formation decreases the protein's chromatin-association and transcriptional activity, indicating the importance of condensates in organizing the NPR1-signaling hub and initiating the transcriptional cascade. This study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can the dependence of the xenia effect on long-distance mRNA transport be used to improve fruit traits? 能否利用enia效应对mRNA远距离运输的依赖性来改善果实性状?
IF 17.1 1区 生物学
Molecular Plant Pub Date : 2024-08-22 DOI: 10.1016/j.molp.2024.08.009
Munenori Kitagawa
{"title":"Can the dependence of the xenia effect on long-distance mRNA transport be used to improve fruit traits?","authors":"Munenori Kitagawa","doi":"10.1016/j.molp.2024.08.009","DOIUrl":"https://doi.org/10.1016/j.molp.2024.08.009","url":null,"abstract":"","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信