Vasiliki Zacharaki, Marti Quevedo, Sarah Muniz Nardeli, Shiv Kumar Meena, Elena Monte, Peter Kindgren
{"title":"Convergent antisense transcription primes hosting genes for stress responsiveness in plants.","authors":"Vasiliki Zacharaki, Marti Quevedo, Sarah Muniz Nardeli, Shiv Kumar Meena, Elena Monte, Peter Kindgren","doi":"10.1016/j.molp.2025.10.001","DOIUrl":null,"url":null,"abstract":"<p><p>Plants need to constantly surveil their surroundings to adapt to environmental fluctuations, which they achieve primarily through transcriptional reprogramming. Thus, plants are excellent models for identifying novel transcriptional regulatory mechanisms. Here, we characterize regulation conveyed by long non-coding transcription that initiates on the complementary strand in the 5'-end of coding genes (Convergent Antisense transcription (CASt)). In Arabidopsis, CASt is associated with stress-responsive genes that are highly expressed. Our analysis shows that CASt depends on a specific gene architecture that is evolutionarily conserved in higher plants. CASt is present in genes with an extended first intron and over-represented in genes with a transporter function in Arabidopsis, such as the AAP transporter family. Experimental evidence points to a role for CASt in priming their host genes for stress-responsiveness in evolutionary divergent plant species. Furthermore, we were able to predict stress responsiveness in AAP rice genes based on the presence of a long first intron and CASt. Overall, we show an evolutionary strategy and regulatory mechanism specific to plants for enhancing stress responsiveness through modification of gene architecture and antisense transcription.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":24.1000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.10.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants need to constantly surveil their surroundings to adapt to environmental fluctuations, which they achieve primarily through transcriptional reprogramming. Thus, plants are excellent models for identifying novel transcriptional regulatory mechanisms. Here, we characterize regulation conveyed by long non-coding transcription that initiates on the complementary strand in the 5'-end of coding genes (Convergent Antisense transcription (CASt)). In Arabidopsis, CASt is associated with stress-responsive genes that are highly expressed. Our analysis shows that CASt depends on a specific gene architecture that is evolutionarily conserved in higher plants. CASt is present in genes with an extended first intron and over-represented in genes with a transporter function in Arabidopsis, such as the AAP transporter family. Experimental evidence points to a role for CASt in priming their host genes for stress-responsiveness in evolutionary divergent plant species. Furthermore, we were able to predict stress responsiveness in AAP rice genes based on the presence of a long first intron and CASt. Overall, we show an evolutionary strategy and regulatory mechanism specific to plants for enhancing stress responsiveness through modification of gene architecture and antisense transcription.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.