Man Gao, Emmanuel Aguilar, Borja Garnelo Gómez, Laura Medina-Puche, Pengfei Fan, Irene Ontiveros, Shaojun Pan, Huang Tan, Hua Wei, Edda von Roepenack-Lahaye, Na Chen, Xiao-Wei Wang, David C Baulcombe, Eduardo R Bejarano, Juan Antonio Díaz-Pendón, Masahiko Furutani, Miyo Terao Morita, Rosa Lozano-Durán
{"title":"A plant virus causes symptoms through the deployment of a host-mimicking protein domain to attract the insect vector.","authors":"Man Gao, Emmanuel Aguilar, Borja Garnelo Gómez, Laura Medina-Puche, Pengfei Fan, Irene Ontiveros, Shaojun Pan, Huang Tan, Hua Wei, Edda von Roepenack-Lahaye, Na Chen, Xiao-Wei Wang, David C Baulcombe, Eduardo R Bejarano, Juan Antonio Díaz-Pendón, Masahiko Furutani, Miyo Terao Morita, Rosa Lozano-Durán","doi":"10.1016/j.molp.2025.05.011","DOIUrl":null,"url":null,"abstract":"<p><p>Plant viruses cause symptoms with devastating consequences for agriculture. However, the molecular mechanisms underlying symptom development in viral infections remain largely unexplored. Here, we show that tomato yellow leaf curl virus (TYLCV) interferes with host developmental programs through a host-mimicking domain present in the viral C4 protein. This domain mediates the interaction between C4 and a family of RCC1-like domain-containing (RLD) proteins, previously shown to be required for proper plant development and environmental responses. C4 outcompetes an endogenous interactor of RLDs, hijacking RLD proteins to the plasma membrane and disrupting their function in orchestrating endomembrane trafficking and polar auxin transport. Strikingly, macroscopic symptoms do not affect viral accumulation in the plant but serve as attractants for the insect vector, presumably promoting pathogen spread in an ecological context. Our work sheds light on the molecular underpinnings and biological relevance of symptom development triggered by TYLCV in tomato. Since most plant viruses are insect-transmitted, the principles described here might have broad applicability to crop-virus interactions.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1029-1046"},"PeriodicalIF":17.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.05.011","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant viruses cause symptoms with devastating consequences for agriculture. However, the molecular mechanisms underlying symptom development in viral infections remain largely unexplored. Here, we show that tomato yellow leaf curl virus (TYLCV) interferes with host developmental programs through a host-mimicking domain present in the viral C4 protein. This domain mediates the interaction between C4 and a family of RCC1-like domain-containing (RLD) proteins, previously shown to be required for proper plant development and environmental responses. C4 outcompetes an endogenous interactor of RLDs, hijacking RLD proteins to the plasma membrane and disrupting their function in orchestrating endomembrane trafficking and polar auxin transport. Strikingly, macroscopic symptoms do not affect viral accumulation in the plant but serve as attractants for the insect vector, presumably promoting pathogen spread in an ecological context. Our work sheds light on the molecular underpinnings and biological relevance of symptom development triggered by TYLCV in tomato. Since most plant viruses are insect-transmitted, the principles described here might have broad applicability to crop-virus interactions.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.