Elucidation and de novo reconstitution of glyceollin biosynthesis.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Plant Pub Date : 2025-05-05 Epub Date: 2025-04-10 DOI:10.1016/j.molp.2025.04.003
Yunlong Sun, Cong Chen, Chao Lin, Hao Zhang, Jiazhang Lian, Benke Hong
{"title":"Elucidation and de novo reconstitution of glyceollin biosynthesis.","authors":"Yunlong Sun, Cong Chen, Chao Lin, Hao Zhang, Jiazhang Lian, Benke Hong","doi":"10.1016/j.molp.2025.04.003","DOIUrl":null,"url":null,"abstract":"<p><p>Glyceollins are phytoalexins, soybean-produced compounds that respond to pathogen invasion, injury, and environmental challenges. While these compounds have diverse bioactivities, their limited accessibility hinders further physiological and biochemical studies. Additionally, the incomplete understanding of glyceollin biosynthesis, particularly cyclization steps, remains a major barrier to sustainable production through synthetic biology. In this study, we uncover the complete biosynthetic pathway of glyceollins through a combinatorial approach involving transient expression in Nicotiana benthamiana, in vitro enzyme characterization, and yeast feeding studies. We identified previously uncharacterized genes encoding reductases for 7,2',4'-trihydroxyisoflavanol biosynthesis and five P450 enzymes that mediate the final oxidative cyclization to produce glyceollins I, II, and III. By de novo reconstruction of the pathway through synthetic biology and metabolic engineering, we successfully produced glyceollins from simple carbon sources in baker's yeast. This work advances the understanding of glyceollin biosynthesis in soybeans, enables sustainable production in microbial hosts, and offers new opportunities for their application in agriculture and biology.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":"18 5","pages":"820-832"},"PeriodicalIF":17.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.04.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glyceollins are phytoalexins, soybean-produced compounds that respond to pathogen invasion, injury, and environmental challenges. While these compounds have diverse bioactivities, their limited accessibility hinders further physiological and biochemical studies. Additionally, the incomplete understanding of glyceollin biosynthesis, particularly cyclization steps, remains a major barrier to sustainable production through synthetic biology. In this study, we uncover the complete biosynthetic pathway of glyceollins through a combinatorial approach involving transient expression in Nicotiana benthamiana, in vitro enzyme characterization, and yeast feeding studies. We identified previously uncharacterized genes encoding reductases for 7,2',4'-trihydroxyisoflavanol biosynthesis and five P450 enzymes that mediate the final oxidative cyclization to produce glyceollins I, II, and III. By de novo reconstruction of the pathway through synthetic biology and metabolic engineering, we successfully produced glyceollins from simple carbon sources in baker's yeast. This work advances the understanding of glyceollin biosynthesis in soybeans, enables sustainable production in microbial hosts, and offers new opportunities for their application in agriculture and biology.

甘油生物合成的阐释和从头重构。
甘油是一种植物抗毒素,大豆产生的化合物,对病原体入侵,伤害和环境挑战作出反应。虽然这些化合物具有多种生物活性,但其有限的可及性阻碍了进一步的生理生化研究。此外,对甘油生物合成的不完全了解,特别是环化步骤,仍然是通过合成生物学可持续生产的主要障碍。在这项研究中,我们通过组合方法揭示了甘油的完整生物合成途径,包括在烟叶中的瞬时表达、体外酶表征和酵母饲养研究。我们鉴定了先前未被鉴定的编码7,2',4'-三羟基异黄烷醇生物合成还原酶的基因和介导最终氧化环化产生甘油I, II和III的5种P450酶。通过合成生物学和代谢工程对该途径进行从头重建,我们成功地从面包酵母的简单碳源中生产出了甘油。本研究提高了对大豆中甘油合成的认识,实现了微生物宿主的可持续生产,并为其在农业和生物学中的应用提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信