Nature Methods最新文献

筛选
英文 中文
xTrimoPGLM: unified 100-billion-parameter pretrained transformer for deciphering the language of proteins. xTrimoPGLM:用于破译蛋白质语言的统一的1000亿个参数预训练转换器。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 Epub Date: 2025-04-03 DOI: 10.1038/s41592-025-02636-z
Bo Chen, Xingyi Cheng, Pan Li, Yangli-Ao Geng, Jing Gong, Shen Li, Zhilei Bei, Xu Tan, Boyan Wang, Xin Zeng, Chiming Liu, Aohan Zeng, Yuxiao Dong, Jie Tang, Le Song
{"title":"xTrimoPGLM: unified 100-billion-parameter pretrained transformer for deciphering the language of proteins.","authors":"Bo Chen, Xingyi Cheng, Pan Li, Yangli-Ao Geng, Jing Gong, Shen Li, Zhilei Bei, Xu Tan, Boyan Wang, Xin Zeng, Chiming Liu, Aohan Zeng, Yuxiao Dong, Jie Tang, Le Song","doi":"10.1038/s41592-025-02636-z","DOIUrl":"10.1038/s41592-025-02636-z","url":null,"abstract":"<p><p>Protein language models have shown remarkable success in learning biological information from protein sequences. However, most existing models are limited by either autoencoding or autoregressive pretraining objectives, which makes them struggle to handle protein understanding and generation tasks concurrently. We propose a unified protein language model, xTrimoPGLM, to address these two types of tasks simultaneously through an innovative pretraining framework. Our key technical contribution is an exploration of the compatibility and the potential for joint optimization of the two types of objectives, which has led to a strategy for training xTrimoPGLM at an unprecedented scale of 100 billion parameters and 1 trillion training tokens. Our extensive experiments reveal that (1) xTrimoPGLM substantially outperforms other advanced baselines in 18 protein understanding benchmarks across four categories. The model also facilitates an atomic-resolution view of protein structures, leading to an advanced three-dimensional structural prediction model that surpasses existing language model-based tools. (2) xTrimoPGLM not only can generate de novo protein sequences following the principles of natural ones, but also can perform programmable generation after supervised fine-tuning on curated sequences. These results highlight the substantial capability and versatility of xTrimoPGLM in understanding and generating protein sequences, contributing to the evolving landscape of foundation models in protein science. Trained weight for the xTrimoPGLM model, and downstream datasets are available at https://huggingface.co/biomap-research .</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1028-1039"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143780656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CAVE: Connectome Annotation Versioning Engine. CAVE:连接体注释版本引擎。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 Epub Date: 2025-04-09 DOI: 10.1038/s41592-024-02426-z
Sven Dorkenwald, Casey M Schneider-Mizell, Derrick Brittain, Akhilesh Halageri, Chris Jordan, Nico Kemnitz, Manual A Castro, William Silversmith, Jeremy Maitin-Shephard, Jakob Troidl, Hanspeter Pfister, Valentin Gillet, Daniel Xenes, J Alexander Bae, Agnes L Bodor, JoAnn Buchanan, Daniel J Bumbarger, Leila Elabbady, Zhen Jia, Daniel Kapner, Sam Kinn, Kisuk Lee, Kai Li, Ran Lu, Thomas Macrina, Gayathri Mahalingam, Eric Mitchell, Shanka Subhra Mondal, Shang Mu, Barak Nehoran, Sergiy Popovych, Marc Takeno, Russel Torres, Nicholas L Turner, William Wong, Jingpeng Wu, Wenjing Yin, Szi-Chieh Yu, R Clay Reid, Nuno Maçarico da Costa, H Sebastian Seung, Forrest Collman
{"title":"CAVE: Connectome Annotation Versioning Engine.","authors":"Sven Dorkenwald, Casey M Schneider-Mizell, Derrick Brittain, Akhilesh Halageri, Chris Jordan, Nico Kemnitz, Manual A Castro, William Silversmith, Jeremy Maitin-Shephard, Jakob Troidl, Hanspeter Pfister, Valentin Gillet, Daniel Xenes, J Alexander Bae, Agnes L Bodor, JoAnn Buchanan, Daniel J Bumbarger, Leila Elabbady, Zhen Jia, Daniel Kapner, Sam Kinn, Kisuk Lee, Kai Li, Ran Lu, Thomas Macrina, Gayathri Mahalingam, Eric Mitchell, Shanka Subhra Mondal, Shang Mu, Barak Nehoran, Sergiy Popovych, Marc Takeno, Russel Torres, Nicholas L Turner, William Wong, Jingpeng Wu, Wenjing Yin, Szi-Chieh Yu, R Clay Reid, Nuno Maçarico da Costa, H Sebastian Seung, Forrest Collman","doi":"10.1038/s41592-024-02426-z","DOIUrl":"10.1038/s41592-024-02426-z","url":null,"abstract":"<p><p>Advances in electron microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets, which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this changing and expanding data landscape. Here we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure that provides scalable solutions for proofreading and flexible annotation support for fast analysis queries at arbitrary time points. Deployed as a suite of web services, CAVE empowers distributed communities to perform reproducible connectome analysis in up to petascale datasets (~1 mm<sup>3</sup>) while proofreading and annotating is ongoing.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"1112-1120"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ATLAS: a rationally designed anterograde transsynaptic tracer. ATLAS:一种设计合理的顺行跨突触示踪剂。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 DOI: 10.1038/s41592-025-02670-x
Jacqueline F Rivera, Haoyang Huang, Weiguang Weng, Heesung Sohn, Allison E Girasole, Shun Li, Madeline A Albanese, Melissa Qin, Can Tao, Molly E Klug, Sadhna Rao, Ronald Paletzki, Bruce E Herring, Scott E Kanoski, Li I Zhang, Charles R Gerfen, Bernardo L Sabatini, Don B Arnold
{"title":"ATLAS: a rationally designed anterograde transsynaptic tracer.","authors":"Jacqueline F Rivera, Haoyang Huang, Weiguang Weng, Heesung Sohn, Allison E Girasole, Shun Li, Madeline A Albanese, Melissa Qin, Can Tao, Molly E Klug, Sadhna Rao, Ronald Paletzki, Bruce E Herring, Scott E Kanoski, Li I Zhang, Charles R Gerfen, Bernardo L Sabatini, Don B Arnold","doi":"10.1038/s41592-025-02670-x","DOIUrl":"10.1038/s41592-025-02670-x","url":null,"abstract":"<p><p>Genetically modified rabies virus can map neural circuits retrogradely from genetically determined cells. However, similar tools for anterograde tracing are not available. Here, we describe a method for anterograde transsynaptic tracing from genetically determined neurons based on a rationally designed protein, ATLAS. Expression of ATLAS in neurons causes presynaptic release of a payload composed of an antibody-like protein, AMPA.FingR, which binds to the N terminus of GluA1, and a recombinase. In the synaptic cleft, AMPA.FingR binds to GluA1, causing the payload to be endocytosed into postsynaptic cells and delivered to the nucleus, where it triggers expression of a recombinase-dependent reporter. In mice, ATLAS mediates monosynaptic transneuronal tracing from random or genetically determined cells that is strictly anterograde, synaptic and nontoxic. Moreover, ATLAS-mediated tracing shows activity dependence, suggesting that it can label active circuits underlying specific behaviors. Finally, ATLAS is composed of modular components that can be independently replaced or modified.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"1101-1111"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144033091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell atlases for reproductive health. 生殖健康细胞图谱。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 DOI: 10.1038/s41592-025-02709-z
Madhura Mukhopadhyay
{"title":"Cell atlases for reproductive health.","authors":"Madhura Mukhopadhyay","doi":"10.1038/s41592-025-02709-z","DOIUrl":"https://doi.org/10.1038/s41592-025-02709-z","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"893"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143972425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling the 3D epigenome to the transcriptome in single cells. 在单细胞中将三维表观基因组与转录组耦合。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 DOI: 10.1038/s41592-025-02666-7
{"title":"Coupling the 3D epigenome to the transcriptome in single cells.","authors":"","doi":"10.1038/s41592-025-02666-7","DOIUrl":"https://doi.org/10.1038/s41592-025-02666-7","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"906-907"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143990931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PTM-Mamba: a PTM-aware protein language model with bidirectional gated Mamba blocks. ptm -曼巴:一个具有双向门控曼巴块的ptm感知蛋白质语言模型。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 Epub Date: 2025-04-10 DOI: 10.1038/s41592-025-02656-9
Fred Zhangzhi Peng, Chentong Wang, Tong Chen, Benjamin Schussheim, Sophia Vincoff, Pranam Chatterjee
{"title":"PTM-Mamba: a PTM-aware protein language model with bidirectional gated Mamba blocks.","authors":"Fred Zhangzhi Peng, Chentong Wang, Tong Chen, Benjamin Schussheim, Sophia Vincoff, Pranam Chatterjee","doi":"10.1038/s41592-025-02656-9","DOIUrl":"10.1038/s41592-025-02656-9","url":null,"abstract":"<p><p>Current protein language models (LMs) accurately encode protein properties but have yet to represent post-translational modifications (PTMs), which are crucial for proteomic diversity and influence protein structure, function and interactions. To address this gap, we develop PTM-Mamba, a PTM-aware protein LM that integrates PTM tokens using bidirectional Mamba blocks fused with ESM-2 protein LM embeddings via a newly developed gating mechanism. PTM-Mamba uniquely models both wild-type and PTM sequences, enabling downstream tasks such as disease association and druggability prediction, PTM effect prediction on protein-protein interactions and zero-shot PTM discovery. In total, our work establishes PTM-Mamba as a foundational tool for PTM-aware protein modeling and design.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"945-949"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144036415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error-corrected flow-based sequencing at whole-genome scale and its application to circulating cell-free DNA profiling. 全基因组规模的纠错流式测序及其在循环无细胞DNA分析中的应用。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 Epub Date: 2025-04-11 DOI: 10.1038/s41592-025-02648-9
Alexandre Pellan Cheng, Adam J Widman, Anushri Arora, Itai Rusinek, Aaron Sossin, Srinivas Rajagopalan, Nicholas Midler, William F Hooper, Rebecca M Murray, Daniel Halmos, Theophile Langanay, Hoyin Chu, Giorgio Inghirami, Catherine Potenski, Soren Germer, Melissa Marton, Dina Manaa, Adrienne Helland, Rob Furatero, Jaime McClintock, Lara Winterkorn, Zoe Steinsnyder, Yohyoh Wang, Asrar I Alimohamed, Murtaza S Malbari, Ashish Saxena, Margaret K Callahan, Dennie T Frederick, Lavinia Spain, Michael Sigouros, Jyothi Manohar, Abigail King, David Wilkes, John Otilano, Olivier Elemento, Juan Miguel Mosquera, Ariel Jaimovich, Doron Lipson, Samra Turajlic, Michael C Zody, Nasser K Altorki, Jedd D Wolchok, Michael A Postow, Nicolas Robine, Bishoy M Faltas, Genevieve Boland, Dan A Landau
{"title":"Error-corrected flow-based sequencing at whole-genome scale and its application to circulating cell-free DNA profiling.","authors":"Alexandre Pellan Cheng, Adam J Widman, Anushri Arora, Itai Rusinek, Aaron Sossin, Srinivas Rajagopalan, Nicholas Midler, William F Hooper, Rebecca M Murray, Daniel Halmos, Theophile Langanay, Hoyin Chu, Giorgio Inghirami, Catherine Potenski, Soren Germer, Melissa Marton, Dina Manaa, Adrienne Helland, Rob Furatero, Jaime McClintock, Lara Winterkorn, Zoe Steinsnyder, Yohyoh Wang, Asrar I Alimohamed, Murtaza S Malbari, Ashish Saxena, Margaret K Callahan, Dennie T Frederick, Lavinia Spain, Michael Sigouros, Jyothi Manohar, Abigail King, David Wilkes, John Otilano, Olivier Elemento, Juan Miguel Mosquera, Ariel Jaimovich, Doron Lipson, Samra Turajlic, Michael C Zody, Nasser K Altorki, Jedd D Wolchok, Michael A Postow, Nicolas Robine, Bishoy M Faltas, Genevieve Boland, Dan A Landau","doi":"10.1038/s41592-025-02648-9","DOIUrl":"10.1038/s41592-025-02648-9","url":null,"abstract":"<p><p>Differentiating sequencing errors from true variants is a central genomics challenge, calling for error suppression strategies that balance costs and sensitivity. For example, circulating cell-free DNA (ccfDNA) sequencing for cancer monitoring is limited by sparsity of circulating tumor DNA, abundance of genomic material in samples and preanalytical error rates. Whole-genome sequencing (WGS) can overcome the low abundance of ccfDNA by integrating signals across the mutation landscape, but higher costs limit its wide adoption. Here, we applied deep (~120×) lower-cost WGS (Ultima Genomics) for tumor-informed circulating tumor DNA detection within the part-per-million range. We further leveraged lower-cost sequencing by developing duplex error-corrected WGS of ccfDNA, achieving 7.7 × 10<sup>-7</sup> error rates, allowing us to assess disease burden in individuals with melanoma and urothelial cancer without matched tumor sequencing. This error-corrected WGS approach will have broad applicability across genomics, allowing for accurate calling of low-abundance variants at efficient cost and enabling deeper mapping of somatic mosaicism as an emerging central aspect of aging and disease.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"973-981"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143971644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating GWAS and spatial omics. 整合GWAS与空间组学。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 DOI: 10.1038/s41592-025-02711-5
Lin Tang
{"title":"Integrating GWAS and spatial omics.","authors":"Lin Tang","doi":"10.1038/s41592-025-02711-5","DOIUrl":"https://doi.org/10.1038/s41592-025-02711-5","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"894"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the black box in neural signal analysis. 破解神经信号分析中的黑匣子。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 DOI: 10.1038/s41592-025-02715-1
Nina Vogt
{"title":"Unraveling the black box in neural signal analysis.","authors":"Nina Vogt","doi":"10.1038/s41592-025-02715-1","DOIUrl":"https://doi.org/10.1038/s41592-025-02715-1","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"894"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144025088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracing neural circuits in the anterograde direction. 沿着顺行方向追踪神经回路。
IF 36.1 1区 生物学
Nature Methods Pub Date : 2025-05-01 DOI: 10.1038/s41592-025-02671-w
{"title":"Tracing neural circuits in the anterograde direction.","authors":"","doi":"10.1038/s41592-025-02671-w","DOIUrl":"https://doi.org/10.1038/s41592-025-02671-w","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"910-911"},"PeriodicalIF":36.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信