Dose-efficient cryo-electron microscopy for thick samples using tilt- corrected scanning transmission electron microscopy

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yue Yu, Katherine A. Spoth, Michael Colletta, Kayla X. Nguyen, Steven E. Zeltmann, Xiyue S. Zhang, Mohammadreza Paraan, Mykhailo Kopylov, Charlie Dubbeldam, Daniel Serwas, Hannah Siems, David A. Muller, Lena F. Kourkoutis
{"title":"Dose-efficient cryo-electron microscopy for thick samples using tilt- corrected scanning transmission electron microscopy","authors":"Yue Yu, Katherine A. Spoth, Michael Colletta, Kayla X. Nguyen, Steven E. Zeltmann, Xiyue S. Zhang, Mohammadreza Paraan, Mykhailo Kopylov, Charlie Dubbeldam, Daniel Serwas, Hannah Siems, David A. Muller, Lena F. Kourkoutis","doi":"10.1038/s41592-025-02834-9","DOIUrl":null,"url":null,"abstract":"Cryogenic electron microscopy is a powerful tool in structural biology. In thick specimens, challenges arise as an exponentially larger fraction of the transmitted electrons lose energy from inelastic scattering and can no longer be properly focused as a result of chromatic aberrations in the post-specimen optics. Rather than filtering out the inelastic scattering at the price of reducing potential signal, as is done in energy-filtered transmission electron microscopy, we show how a dose-efficient and unfiltered image can be rapidly obtained using tilt-corrected bright-field scanning transmission electron microscopy data collected on a pixelated detector. Enhanced contrast and a 3–5× improvement in dose efficiency are observed for two-dimensional images of intact bacterial cells and large organelles using tilt-corrected bright-field scanning transmission electron microscopy compared to energy-filtered transmission electron microscopy for thicknesses beyond 500 nm. As a proof of concept for the technique’s performance in structural determination, we present a single-particle analysis map at sub-nanometer resolution for a highly symmetric virus-like particle determined from 789 particles. Tilt-corrected bright-field scanning transmission electron microscopy offers enhanced cryogenic electron microscopy contrast and substantial improvement in dose efficiency for thick samples such as bacterial cells and large organelles, while still being able to perform single-particle analysis.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 10","pages":"2138-2148"},"PeriodicalIF":32.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41592-025-02834-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-025-02834-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic electron microscopy is a powerful tool in structural biology. In thick specimens, challenges arise as an exponentially larger fraction of the transmitted electrons lose energy from inelastic scattering and can no longer be properly focused as a result of chromatic aberrations in the post-specimen optics. Rather than filtering out the inelastic scattering at the price of reducing potential signal, as is done in energy-filtered transmission electron microscopy, we show how a dose-efficient and unfiltered image can be rapidly obtained using tilt-corrected bright-field scanning transmission electron microscopy data collected on a pixelated detector. Enhanced contrast and a 3–5× improvement in dose efficiency are observed for two-dimensional images of intact bacterial cells and large organelles using tilt-corrected bright-field scanning transmission electron microscopy compared to energy-filtered transmission electron microscopy for thicknesses beyond 500 nm. As a proof of concept for the technique’s performance in structural determination, we present a single-particle analysis map at sub-nanometer resolution for a highly symmetric virus-like particle determined from 789 particles. Tilt-corrected bright-field scanning transmission electron microscopy offers enhanced cryogenic electron microscopy contrast and substantial improvement in dose efficiency for thick samples such as bacterial cells and large organelles, while still being able to perform single-particle analysis.

Abstract Image

使用倾斜校正扫描透射电子显微镜对厚样品进行剂量有效的冷冻电子显微镜。
低温电子显微镜是结构生物学的有力工具。在厚的样品中,挑战出现了,因为透射电子的一个指数大的分数失去能量,从非弹性散射和不能再正确聚焦的结果,色差在样品后光学。而不是以降低电位信号为代价过滤掉非弹性散射,正如在能量过滤透射电子显微镜中所做的那样,我们展示了如何使用倾斜校正的亮场扫描透射电子显微镜数据在像素化检测器上收集快速获得剂量有效和未过滤的图像。与能量过滤透射电镜相比,使用倾斜校正的亮场扫描透射电镜对厚度超过500 nm的完整细菌细胞和大型细胞器的二维图像进行对比度增强,剂量效率提高3-5倍。为了证明该技术在结构确定方面的性能,我们提出了一个亚纳米分辨率的单颗粒分析图,用于从789个颗粒中确定高度对称的病毒样颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信