MIFA: Metadata, Incentives, Formats and Accessibility guidelines to improve the reuse of AI datasets for bioimage analysis.

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Teresa Zulueta-Coarasa, Florian Jug, Aastha Mathur, Josh Moore, Arrate Muñoz-Barrutia, Liviu Anita, Kolawole Babalola, Peter Bankhead, Perrine Gilloteaux, Nodar Gogoberidze, Martin L Jones, Gerard J Kleywegt, Paul Korir, Anna Kreshuk, Aybüke Küpcü Yoldaş, Luca Marconato, Kedar Narayan, Nils Norlin, Bugra Oezdemir, Jessica L Riesterer, Craig Russell, Norman Rzepka, Ugis Sarkans, Beatriz Serrano-Solano, Christian Tischer, Virginie Uhlmann, Vladimír Ulman, Matthew Hartley
{"title":"MIFA: Metadata, Incentives, Formats and Accessibility guidelines to improve the reuse of AI datasets for bioimage analysis.","authors":"Teresa Zulueta-Coarasa, Florian Jug, Aastha Mathur, Josh Moore, Arrate Muñoz-Barrutia, Liviu Anita, Kolawole Babalola, Peter Bankhead, Perrine Gilloteaux, Nodar Gogoberidze, Martin L Jones, Gerard J Kleywegt, Paul Korir, Anna Kreshuk, Aybüke Küpcü Yoldaş, Luca Marconato, Kedar Narayan, Nils Norlin, Bugra Oezdemir, Jessica L Riesterer, Craig Russell, Norman Rzepka, Ugis Sarkans, Beatriz Serrano-Solano, Christian Tischer, Virginie Uhlmann, Vladimír Ulman, Matthew Hartley","doi":"10.1038/s41592-025-02835-8","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) methods are powerful tools for biological image analysis and processing. High-quality annotated images are key to training and developing new algorithms, but access to such data is often hindered by the lack of standards for sharing datasets. We discuss the barriers to sharing annotated image datasets and suggest specific guidelines to improve the reuse of bioimages and annotations for AI applications. These include standards on data formats, metadata, data presentation and sharing, and incentives to generate new datasets. We are sure that the Metadata, Incentives, Formats and Accessibility (MIFA) recommendations will accelerate the development of AI tools for bioimage analysis by facilitating access to high-quality training and benchmarking data.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02835-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) methods are powerful tools for biological image analysis and processing. High-quality annotated images are key to training and developing new algorithms, but access to such data is often hindered by the lack of standards for sharing datasets. We discuss the barriers to sharing annotated image datasets and suggest specific guidelines to improve the reuse of bioimages and annotations for AI applications. These include standards on data formats, metadata, data presentation and sharing, and incentives to generate new datasets. We are sure that the Metadata, Incentives, Formats and Accessibility (MIFA) recommendations will accelerate the development of AI tools for bioimage analysis by facilitating access to high-quality training and benchmarking data.

MIFA:元数据、激励、格式和可访问性指南,以改善生物图像分析中人工智能数据集的重用。
人工智能(AI)方法是生物图像分析和处理的有力工具。高质量的注释图像是训练和开发新算法的关键,但由于缺乏共享数据集的标准,对这些数据的访问往往受到阻碍。我们讨论了共享注释图像数据集的障碍,并提出了具体的指导方针,以提高人工智能应用程序对生物图像和注释的重用。其中包括数据格式、元数据、数据表示和共享的标准,以及生成新数据集的激励措施。我们确信,元数据、激励、格式和可访问性(MIFA)建议将促进高质量培训和基准数据的访问,从而加速生物图像分析人工智能工具的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信