Yuhao Xie, Chengwei Zhang, Shimian Li, Xinyu Du, Yanjiao Lu, Min Wang, Yingtong Hu, Zhenyu Chen, Sirui Liu, Yi Qin Gao
{"title":"整合多种实验信息,利用GRASP辅助蛋白质复合体结构预测","authors":"Yuhao Xie, Chengwei Zhang, Shimian Li, Xinyu Du, Yanjiao Lu, Min Wang, Yingtong Hu, Zhenyu Chen, Sirui Liu, Yi Qin Gao","doi":"10.1038/s41592-025-02820-1","DOIUrl":null,"url":null,"abstract":"<p><p>Protein complex structure prediction is crucial for understanding of biological activities and advancing drug development. While various experimental methods can provide structural insights into protein complexes, the knowledge obtained is often sparse or approximate. A general tool is needed to integrate limited experimental information for high-throughput and accurate prediction. Here we introduce GRASP to efficiently and flexibly incorporate diverse forms of experimental information. GRASP outperforms existing tools in handling both simulated and real-world experimental restraints including those from crosslinking, covalent labeling, chemical shift perturbation and deep mutational scanning. For example, GRASP excels at predicting antigen-antibody complex structures, even surpassing AlphaFold3 when using experimental deep mutational scanning or covalent-labeling restraints. Beyond its accuracy and flexibility in restrained structure prediction, GRASP's ability to integrate multiple forms of restraints enables integrative modeling. We also showcase its potential in modeling protein structural interactome under near-cellular conditions using previously reported large-scale in situ crosslinking data for mitochondria.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating diverse experimental information to assist protein complex structure prediction by GRASP.\",\"authors\":\"Yuhao Xie, Chengwei Zhang, Shimian Li, Xinyu Du, Yanjiao Lu, Min Wang, Yingtong Hu, Zhenyu Chen, Sirui Liu, Yi Qin Gao\",\"doi\":\"10.1038/s41592-025-02820-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein complex structure prediction is crucial for understanding of biological activities and advancing drug development. While various experimental methods can provide structural insights into protein complexes, the knowledge obtained is often sparse or approximate. A general tool is needed to integrate limited experimental information for high-throughput and accurate prediction. Here we introduce GRASP to efficiently and flexibly incorporate diverse forms of experimental information. GRASP outperforms existing tools in handling both simulated and real-world experimental restraints including those from crosslinking, covalent labeling, chemical shift perturbation and deep mutational scanning. For example, GRASP excels at predicting antigen-antibody complex structures, even surpassing AlphaFold3 when using experimental deep mutational scanning or covalent-labeling restraints. Beyond its accuracy and flexibility in restrained structure prediction, GRASP's ability to integrate multiple forms of restraints enables integrative modeling. We also showcase its potential in modeling protein structural interactome under near-cellular conditions using previously reported large-scale in situ crosslinking data for mitochondria.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":32.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02820-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02820-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Integrating diverse experimental information to assist protein complex structure prediction by GRASP.
Protein complex structure prediction is crucial for understanding of biological activities and advancing drug development. While various experimental methods can provide structural insights into protein complexes, the knowledge obtained is often sparse or approximate. A general tool is needed to integrate limited experimental information for high-throughput and accurate prediction. Here we introduce GRASP to efficiently and flexibly incorporate diverse forms of experimental information. GRASP outperforms existing tools in handling both simulated and real-world experimental restraints including those from crosslinking, covalent labeling, chemical shift perturbation and deep mutational scanning. For example, GRASP excels at predicting antigen-antibody complex structures, even surpassing AlphaFold3 when using experimental deep mutational scanning or covalent-labeling restraints. Beyond its accuracy and flexibility in restrained structure prediction, GRASP's ability to integrate multiple forms of restraints enables integrative modeling. We also showcase its potential in modeling protein structural interactome under near-cellular conditions using previously reported large-scale in situ crosslinking data for mitochondria.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.