Nature Photonics最新文献

筛选
英文 中文
High-power AlGaN deep-ultraviolet micro-light-emitting diode displays for maskless photolithography 用于无掩膜光刻技术的高功率 AlGaN 深紫外微发光二极管显示器
IF 35 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-15 DOI: 10.1038/s41566-024-01551-7
Feng Feng, Yibo Liu, Ke Zhang, Hang Yang, Byung-Ryool Hyun, Ke Xu, Hoi-Sing Kwok, Zhaojun Liu
{"title":"High-power AlGaN deep-ultraviolet micro-light-emitting diode displays for maskless photolithography","authors":"Feng Feng, Yibo Liu, Ke Zhang, Hang Yang, Byung-Ryool Hyun, Ke Xu, Hoi-Sing Kwok, Zhaojun Liu","doi":"10.1038/s41566-024-01551-7","DOIUrl":"https://doi.org/10.1038/s41566-024-01551-7","url":null,"abstract":"<p>Developing aluminium gallium nitride deep-ultraviolet (UVC) micro-light-emitting diodes (micro-LEDs) with sufficient power has been a challenge, which particularly limits these devices to various applications. However, advanced fabrication processes have been developed to enable the demonstration of highly efficient 270 nm UVC micro-LEDs and large-format UVC micro-LED displays with high resolution for maskless photolithography. Optical and electrical characterizations were performed on UVC micro-LEDs with sizes ranging from 3 µm to 100 μm to evaluate these emerging devices. The 3 μm device achieved a record-high peak external quantum efficiency of 5.7% and a maximum brightness of 396 W cm<sup>–2</sup>. Moreover, 2,540 pixels per inch parallel-connected UVC micro-LED arrays featuring rear-side reflection layers exhibited emission uniformity and collimation. UVC micro-LED displays, with a resolution of 320 × 140, were explicitly designed for maskless photolithography applications utilizing a customized integrated circuit driver for optimal performance. The UVC micro-LEDs and UVC micro-displays provide sufficient doses to fully expose the photoresist film within seconds, owing to their enhanced current spreading uniformity, improved heat dispersion and superior light extraction efficiency. This work may open a path to maskless photolithography, potentially leading to revolutionary developments in the semiconductor industry.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"6 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unified laser stabilization and isolation on a silicon chip 硅芯片上的统一激光稳定和隔离技术
IF 35 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-15 DOI: 10.1038/s41566-024-01539-3
Alexander D. White, Geun Ho Ahn, Richard Luhtaru, Joel Guo, Theodore J. Morin, Abhi Saxena, Lin Chang, Arka Majumdar, Kasper Van Gasse, John E. Bowers, Jelena Vučković
{"title":"Unified laser stabilization and isolation on a silicon chip","authors":"Alexander D. White, Geun Ho Ahn, Richard Luhtaru, Joel Guo, Theodore J. Morin, Abhi Saxena, Lin Chang, Arka Majumdar, Kasper Van Gasse, John E. Bowers, Jelena Vučković","doi":"10.1038/s41566-024-01539-3","DOIUrl":"https://doi.org/10.1038/s41566-024-01539-3","url":null,"abstract":"<p>Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale, heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nanoscale devices thwarted by bulky laser sources that are orders of magnitude larger than the devices themselves. Here we show that the two main components for high-performance lasers—noise reduction and isolation—can be sourced simultaneously from a single, passive, CMOS-compatible nanophotonic device, eliminating the need to combine incompatible technologies. To realize this, we take advantage of both the long photon lifetime and the non-reciprocal Kerr nonlinearity of a high-quality-factor silicon nitride ring resonator to self-injection lock a semiconductor laser chip while also providing isolation. We also identify a previously unappreciated power regime limitation of current on-chip laser architectures, which our system overcomes. Using our device, which we term a unified laser stabilizer, we demonstrate an on-chip integrated laser system with built-in isolation and noise reduction that operates with turnkey reliability. This approach departs from efforts to directly miniaturize and integrate traditional laser system components and serves to bridge the gap to fully integrated optical technologies.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"193 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum state processing through controllable synthetic temporal photonic lattices 通过可控合成时态光子晶格实现量子态处理
IF 35 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-14 DOI: 10.1038/s41566-024-01546-4
Monika Monika, Farzam Nosrati, Agnes George, Stefania Sciara, Riza Fazili, André Luiz Marques Muniz, Arstan Bisianov, Rosario Lo Franco, William J. Munro, Mario Chemnitz, Ulf Peschel, Roberto Morandotti
{"title":"Quantum state processing through controllable synthetic temporal photonic lattices","authors":"Monika Monika, Farzam Nosrati, Agnes George, Stefania Sciara, Riza Fazili, André Luiz Marques Muniz, Arstan Bisianov, Rosario Lo Franco, William J. Munro, Mario Chemnitz, Ulf Peschel, Roberto Morandotti","doi":"10.1038/s41566-024-01546-4","DOIUrl":"https://doi.org/10.1038/s41566-024-01546-4","url":null,"abstract":"<p>Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies. Here we present a scalable quantum processor based on the discrete-time quantum walk of time-bin-entangled photon pairs on synthetic temporal photonic lattices implemented on a coupled fibre-loop system. We utilize this scheme to path-optimize quantum state operations, including the generation of two- and four-level time-bin entanglement and the respective two-photon interference. The design of the programmable temporal photonic lattice enabled us to control the dynamic of the walk, leading to an increase in the coincidence counts and quantum interference measurements without recurring to post-selection. Our results show how temporal synthetic dimensions can pave the way towards efficient quantum information processing, including quantum phase estimation, Boson sampling and the realization of topological phases of matter for high-dimensional quantum systems in a cost-effective, scalable and robust fibre-based setup.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"28 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Van der Waals engineering for quantum-entangled photon generation 范德瓦耳斯工程促进量子纠缠光子的产生
IF 35 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-14 DOI: 10.1038/s41566-024-01545-5
Leevi Kallioniemi, Xiaodan Lyu, Ruihua He, Abdullah Rasmita, Ruihuan Duan, Zheng Liu, Weibo Gao
{"title":"Van der Waals engineering for quantum-entangled photon generation","authors":"Leevi Kallioniemi, Xiaodan Lyu, Ruihua He, Abdullah Rasmita, Ruihuan Duan, Zheng Liu, Weibo Gao","doi":"10.1038/s41566-024-01545-5","DOIUrl":"https://doi.org/10.1038/s41566-024-01545-5","url":null,"abstract":"<p>Van der Waals engineering serves as a powerful tool to tailor material properties and design excitonic devices. Here we report quantum-entangled photon pair generation through van der Waals engineering with two-dimensional materials. We align two van der Waals thin layers perpendicular to each other, yielding polarization-entangled photon pairs through the interference of biphoton emission in the two flakes. The polarization-entangled state is measured with a fidelity up to 86 ± 0.7%. The compatibility of van der Waals engineering with on-chip photonics opens new possibilities for entangled photon source integration at the subwavelength scale.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"28 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-optical nonlinear Compton scattering performed with a multi-petawatt laser 用多兆瓦激光器进行的全光学非线性康普顿散射
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-14 DOI: 10.1038/s41566-024-01550-8
Mohammad Mirzaie, Calin Ioan Hojbota, Do Yeon Kim, Vishwa Bandhu Pathak, Tae Gyu Pak, Chul Min Kim, Hwang Woon Lee, Jin Woo Yoon, Seong Ku Lee, Yong Joo Rhee, Marija Vranic, Óscar Amaro, Ki Yong Kim, Jae Hee Sung, Chang Hee Nam
{"title":"All-optical nonlinear Compton scattering performed with a multi-petawatt laser","authors":"Mohammad Mirzaie,&nbsp;Calin Ioan Hojbota,&nbsp;Do Yeon Kim,&nbsp;Vishwa Bandhu Pathak,&nbsp;Tae Gyu Pak,&nbsp;Chul Min Kim,&nbsp;Hwang Woon Lee,&nbsp;Jin Woo Yoon,&nbsp;Seong Ku Lee,&nbsp;Yong Joo Rhee,&nbsp;Marija Vranic,&nbsp;Óscar Amaro,&nbsp;Ki Yong Kim,&nbsp;Jae Hee Sung,&nbsp;Chang Hee Nam","doi":"10.1038/s41566-024-01550-8","DOIUrl":"10.1038/s41566-024-01550-8","url":null,"abstract":"Light–matter interactions driven by ultrahigh-intensity lasers have great potential to uncover the physics associated with quantum electrodynamics (QED) processes occurring in neutron stars and black holes. The Compton scattering between an ultra-relativistic electron beam and an intense laser can reveal a new interaction regime, known as strong-field QED. Here we present an experimental demonstration of nonlinear Compton scattering in a strong laser field, in which a laser-accelerated multi-gigaelectronvolt electron scatters off hundreds of laser photons and converts them into a single gamma-ray photon with several-hundred-megaelectronvolt energy. Along with particle-in-cell (PIC)-QED simulations and analytical calculations, our experimental measurement of gamma-ray spectra verifies the occurrence of Compton scattering in the strongly nonlinear regime, paving the road to examine nonlinear Breit–Wheeler pair production and QED cascades. Researchers demonstrate nonlinear Compton scattering in a strong laser field, in which a laser-accelerated multi-GeV electron scatters off hundreds of laser photons and converts them into a single gamma-ray photon with several-hundred-MeV energy.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1212-1217"},"PeriodicalIF":32.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging 用于近单细胞癌症成像的超亮近红外荧光 DNA 框架
IF 35 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-11 DOI: 10.1038/s41566-024-01543-7
Xia Liu, Ben Shi, Yue Gao, Shitai Zhu, Qinglong Yan, Xiaoguo Liu, Jiye Shi, Qian Li, Lihua Wang, Jiang Li, Chunchang Zhao, He Tian, Itamar Willner, Ying Zhu, Chunhai Fan
{"title":"Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging","authors":"Xia Liu, Ben Shi, Yue Gao, Shitai Zhu, Qinglong Yan, Xiaoguo Liu, Jiye Shi, Qian Li, Lihua Wang, Jiang Li, Chunchang Zhao, He Tian, Itamar Willner, Ying Zhu, Chunhai Fan","doi":"10.1038/s41566-024-01543-7","DOIUrl":"https://doi.org/10.1038/s41566-024-01543-7","url":null,"abstract":"<p>Cancer imaging approaching single-cell levels is highly desirable for studying in vivo cell migration and cancer metastasis. However, current imaging probes struggle to simultaneously achieve high sensitivity, deep-tissue penetration and tissue specificity. Here we report size- and shape-resolved fluorescent DNA framework (FDF) dots with tail emission in the second near-infrared window (1,000–1,700 nm, NIR-II), which enable near-single-cell-level, tumour-targeting deep-tissue (~1 cm) NIR-II imaging in tumour-bearing mouse models. The construction of DNA frameworks with embedded hydrophobic nanocavity results in the non-covalent encapsulation of a designed NIR-Ib (900–1,000 nm) probe (dye Sq964). The FDF dots exhibit high water solubility, brightness and photostability. We find that the stable tumour retention of FDF dots with enhanced signal intensity arises from their shape-dependent accumulation in tumour cells. FDF-dot-based cancer imaging reveals in vivo sensitivity down to ~40 tumour cells, high tumour-to-normal tissue ratios up to ~26 and long-term imaging over 11 days. We also demonstrate NIR-II-image-guided breast cancer surgery with the complete excision of metastases with a minimum size of ~53 μm (~20 cells).</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"2672 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient organic emitters enabled by ultrastrong through-space conjugation 通过超强穿透空间共轭实现高效有机发光体
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-11 DOI: 10.1038/s41566-024-01527-7
Qingyang Xu, Jianyu Zhang, Jing Zhi Sun, Haoke Zhang, Ben Zhong Tang
{"title":"Efficient organic emitters enabled by ultrastrong through-space conjugation","authors":"Qingyang Xu,&nbsp;Jianyu Zhang,&nbsp;Jing Zhi Sun,&nbsp;Haoke Zhang,&nbsp;Ben Zhong Tang","doi":"10.1038/s41566-024-01527-7","DOIUrl":"10.1038/s41566-024-01527-7","url":null,"abstract":"Manipulating the electronic structure of organic functional materials by through-space conjugation (TSC) to achieve desirable photophysical properties has been a long-standing research focus. Although the working mechanisms of TSC have been demonstrated, the roles that the intrinsic molecular skeleton and extrinsic aggregates play remain unclear. Here four trinaphthylmethanol isomers and four trinaphthylmethane (TNM) isomers with varying connecting sites of naphthalene were synthesized, and their photophysical properties were systematically investigated. The strength of TSC was found to rise from 222-TNM to 111-TNM with the increased number of 1-naphthalene units. In particular, 111-TNM was found to support efficient long-wavelength clusteroluminescence with an absolute quantum yield of 55%. Experimental and theoretical results revealed that the inherent attribute of robust intramolecular interactions within individual molecules is fundamental for ultrastrong TSC, and intermolecular interactions play an auxiliary role in fortifying and stabilizing intramolecular interactions. This work reveals the intrinsic and extrinsic factors for manipulating TSC and provides a reliable strategy for constructing non-conjugated luminogens with efficient clusteroluminescence. Efficient organic emitters of ultraviolet light are realized by the use of isomers that exhibit strong through-space conjugation.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1185-1194"},"PeriodicalIF":32.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dressing with visible light 用可见光敷料
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-03 DOI: 10.1038/s41566-024-01521-z
Sheikh Rubaiat Ul Haque, Yuki Kobayashi
{"title":"Dressing with visible light","authors":"Sheikh Rubaiat Ul Haque,&nbsp;Yuki Kobayashi","doi":"10.1038/s41566-024-01521-z","DOIUrl":"10.1038/s41566-024-01521-z","url":null,"abstract":"Ultrashort laser light–matter interactions can create unique virtual quantum states. Researchers have now revealed this phenomenon in solution-grown semiconductor nanoplatelets using visible light.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 10","pages":"1002-1003"},"PeriodicalIF":32.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diamond colour centre enables an atomic optical antenna 钻石色彩中心实现了原子光学天线
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-03 DOI: 10.1038/s41566-024-01522-y
Stefania Castelletto, Mario Agio
{"title":"Diamond colour centre enables an atomic optical antenna","authors":"Stefania Castelletto,&nbsp;Mario Agio","doi":"10.1038/s41566-024-01522-y","DOIUrl":"10.1038/s41566-024-01522-y","url":null,"abstract":"Optical nanoantenna field enhancement is hampered by material- and size-dependent losses. Researchers have now made an atomic antenna using the controlled formation of an isolated germanium vacancy colour centre in diamond, which enables giant near-field optical enhancement and which can detect and control nearby charges and induce energy transfer.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 10","pages":"1004-1005"},"PeriodicalIF":32.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modular quantum-to-quantum Bernoulli factory in an integrated photonic processor 集成光子处理器中的模块化量子到量子伯努利工厂
IF 35 1区 物理与天体物理
Nature Photonics Pub Date : 2024-10-03 DOI: 10.1038/s41566-024-01526-8
Francesco Hoch, Taira Giordani, Luca Castello, Gonzalo Carvacho, Nicolò Spagnolo, Francesco Ceccarelli, Ciro Pentangelo, Simone Piacentini, Andrea Crespi, Roberto Osellame, Ernesto F. Galvão, Fabio Sciarrino
{"title":"Modular quantum-to-quantum Bernoulli factory in an integrated photonic processor","authors":"Francesco Hoch, Taira Giordani, Luca Castello, Gonzalo Carvacho, Nicolò Spagnolo, Francesco Ceccarelli, Ciro Pentangelo, Simone Piacentini, Andrea Crespi, Roberto Osellame, Ernesto F. Galvão, Fabio Sciarrino","doi":"10.1038/s41566-024-01526-8","DOIUrl":"https://doi.org/10.1038/s41566-024-01526-8","url":null,"abstract":"<p>Generation and manipulation of randomness is a relevant task for several applications of information technology. It has been shown that quantum mechanics offers some advantages for this type of task. A promising model for randomness manipulation is provided by Bernoulli factories—protocols capable of changing the bias of Bernoulli random processes in a controlled way. At first, this framework was proposed and investigated in a fully classical regime. Recent extensions of this model to the quantum case showed the possibility of implementing a wider class of randomness manipulation functions. We propose a Bernoulli factory scheme with quantum states as the input and output, using a photonic-path-encoding approach. Our scheme is modular and universal and its functioning is truly oblivious of the input bias—characteristics that were missing in earlier work. We report on experimental implementations using an integrated and fully programmable photonic platform, thereby demonstrating the viability of our approach. These results open new paths for randomness manipulation with integrated quantum technologies.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"47 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信