Yuze Meng, Lei Ma, Li Yan, Ahmed Khalifa, Dongxue Chen, Shuai Zhang, Rounak Banerjee, Takashi Taniguchi, Kenji Watanabe, Seth Ariel Tongay, Benjamin Hunt, Shi-Zeng Lin, Wang Yao, Yong-Tao Cui, Shubhayu Chatterjee, Su-Fei Shi
{"title":"Strong-interaction-driven quadrupolar-to-dipolar exciton transitions in a trilayer moiré superlattice","authors":"Yuze Meng, Lei Ma, Li Yan, Ahmed Khalifa, Dongxue Chen, Shuai Zhang, Rounak Banerjee, Takashi Taniguchi, Kenji Watanabe, Seth Ariel Tongay, Benjamin Hunt, Shi-Zeng Lin, Wang Yao, Yong-Tao Cui, Shubhayu Chatterjee, Su-Fei Shi","doi":"10.1038/s41566-025-01741-x","DOIUrl":null,"url":null,"abstract":"<p>The additional layer degree of freedom in trilayer moiré superlattices of transition metal dichalcogenides enables the emergence of novel excitonic species, such as quadrupolar excitons, which exhibit unique excitonic interactions and hold promise for realizing intriguing excitonic phases and their quantum phase transitions. Concurrently, the presence of strong electronic correlations in moiré superlattices, as exemplified by the observations of Mott insulators and generalized Wigner crystals, offers a direct route to manipulate these new excitonic states and the resulting collective excitonic phases. Here we demonstrate that strong exciton–exciton and electron–exciton interactions, both stemming from robust electron correlations, can be harnessed to controllably drive transitions between quadrupolar and dipolar excitons. This is achieved by tuning either the exciton density or electrostatic doping in a trilayer semiconducting moiré superlattice. Our findings not only advance the fundamental understanding of quadrupolar excitons but also usher in new avenues for exploring and engineering many-body quantum phenomena through novel correlated excitons in semiconducting moiré systems.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"11 1","pages":""},"PeriodicalIF":32.9000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01741-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The additional layer degree of freedom in trilayer moiré superlattices of transition metal dichalcogenides enables the emergence of novel excitonic species, such as quadrupolar excitons, which exhibit unique excitonic interactions and hold promise for realizing intriguing excitonic phases and their quantum phase transitions. Concurrently, the presence of strong electronic correlations in moiré superlattices, as exemplified by the observations of Mott insulators and generalized Wigner crystals, offers a direct route to manipulate these new excitonic states and the resulting collective excitonic phases. Here we demonstrate that strong exciton–exciton and electron–exciton interactions, both stemming from robust electron correlations, can be harnessed to controllably drive transitions between quadrupolar and dipolar excitons. This is achieved by tuning either the exciton density or electrostatic doping in a trilayer semiconducting moiré superlattice. Our findings not only advance the fundamental understanding of quadrupolar excitons but also usher in new avenues for exploring and engineering many-body quantum phenomena through novel correlated excitons in semiconducting moiré systems.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.