Nature PhotonicsPub Date : 2025-10-03DOI: 10.1038/s41566-025-01766-2
Thomas F. Krauss
{"title":"Mie resonances light up nanoplastics","authors":"Thomas F. Krauss","doi":"10.1038/s41566-025-01766-2","DOIUrl":"10.1038/s41566-025-01766-2","url":null,"abstract":"Photonic resonances provide an easy on-chip classification method for nanoplastic particles.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1031-1032"},"PeriodicalIF":32.9,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145211061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2025-10-03DOI: 10.1038/s41566-025-01761-7
Alexander Cerjan
{"title":"A Compact Topological Microwave Isolator","authors":"Alexander Cerjan","doi":"10.1038/s41566-025-01761-7","DOIUrl":"10.1038/s41566-025-01761-7","url":null,"abstract":"A central goal of topological photonics has been to develop compact isolators using protected, non-reciprocal edge states. A recent demonstration of a ferrite-based microwave isolator leverages the magnon-induced topological photonic bandgap to achieve over 100 dB of isolation in a device smaller than a single free-space wavelength.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1035-1036"},"PeriodicalIF":32.9,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145211060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2025-10-03DOI: 10.1038/s41566-025-01739-5
Jörg Enderlein
{"title":"Unlocking cellular complexity with multispectral live-cell imaging","authors":"Jörg Enderlein","doi":"10.1038/s41566-025-01739-5","DOIUrl":"10.1038/s41566-025-01739-5","url":null,"abstract":"A new imaging platform combines a high-speed, multichannel camera system with an iterative spectral unmixing algorithm, enabling high-resolution imaging of up to seven distinct fluorophores, even under challenging live-cell conditions.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1037-1039"},"PeriodicalIF":32.9,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145211063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2025-10-03DOI: 10.1038/s41566-025-01765-3
Benjamin Pingault
{"title":"Spin–photon interfaces in silicon","authors":"Benjamin Pingault","doi":"10.1038/s41566-025-01765-3","DOIUrl":"10.1038/s41566-025-01765-3","url":null,"abstract":"Electrically induced single-photon emission and spin initialization of a silicon T centre in photonic structures is a promising step towards integrated spin–photon interfaces for quantum networks.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1029-1030"},"PeriodicalIF":32.9,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145211058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2025-09-25DOI: 10.1038/s41566-025-01764-4
Mashnoon Alam Sakib, Maxim R. Shcherbakov
{"title":"Thermalized light finds its way","authors":"Mashnoon Alam Sakib, Maxim R. Shcherbakov","doi":"10.1038/s41566-025-01764-4","DOIUrl":"10.1038/s41566-025-01764-4","url":null,"abstract":"Thermodynamic-like phenomena in optics are a nascent yet elusive route to control light flow. By emulating Joule–Thomson expansion in synthetic photonic lattices, it is now possible to funnel light universally into a single output, regardless of the input.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1033-1034"},"PeriodicalIF":32.9,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145211062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2025-09-25DOI: 10.1038/s41566-025-01756-4
Hediyeh M. Dinani, Georgios G. Pyrialakos, Abraham M. Berman Bradley, Monika Monika, Huizhong Ren, Mahmoud A. Selim, Ulf Peschel, Demetrios N. Christodoulides, Mercedeh Khajavikhan
{"title":"Universal routing of light via optical thermodynamics","authors":"Hediyeh M. Dinani, Georgios G. Pyrialakos, Abraham M. Berman Bradley, Monika Monika, Huizhong Ren, Mahmoud A. Selim, Ulf Peschel, Demetrios N. Christodoulides, Mercedeh Khajavikhan","doi":"10.1038/s41566-025-01756-4","DOIUrl":"10.1038/s41566-025-01756-4","url":null,"abstract":"Understanding and exploiting the dynamics of complex nonlinear systems is nowadays at the core of a broad range of scientific and technological endeavours. Within the optical domain, light evolution in a nonlinear multimode environment presents a formidable problem, as its chaotic evolution often hinders predictive insights. Recently, an optical thermodynamic framework has been put forward that, in a systematic manner, can not only predict but also harness the intricate behaviour of these systems. By deploying entropic principles, here we demonstrate a counter-intuitive optical process in which light, launched into any input port of a judiciously designed nonlinear array, universally channels into a tightly localized ground state, a response that is completely unattainable in linear conservative arrangements. This phenomenon arises from the interplay between lattice structure and the way the kinetic and nonlinear Hamiltonian components unfold, leading to two optical thermal processes: Joule–Thomson-like expansion followed by mode thermalization. Experimentally, this effect is demonstrated in properly configured nonlinear time-synthetic mesh lattices, where the optical temperature approaches near zero, causing light to condense at a single spot, regardless of the initial excitation position. The effect demonstrated here opens new avenues for applying the principles of optical thermodynamics in realizing new optical functionalities, such as all-optical beam-steering, multiplexing and nonlinear beam-shaping in high-power regimes, while also offering a greater understanding of the notable physics of light–matter interactions in multimode nonlinear systems. By exploiting an optical thermodynamic framework, researchers demonstrate universal routing of light. Specifically, light launched into any input port of a nonlinear array is universally channelled into a tightly localized ground state. The principles of optical thermodynamics demonstrated may enable new optical functionalities.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1116-1121"},"PeriodicalIF":32.9,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145211057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2025-09-16DOI: 10.1038/s41566-025-01751-9
V. Jelic, S. Adams, D. Maldonado-Lopez, I. A. Buliyaminu, M. Hassan, J. L. Mendoza-Cortes, T. L. Cocker
{"title":"Terahertz field control of surface topology probed with subatomic resolution","authors":"V. Jelic, S. Adams, D. Maldonado-Lopez, I. A. Buliyaminu, M. Hassan, J. L. Mendoza-Cortes, T. L. Cocker","doi":"10.1038/s41566-025-01751-9","DOIUrl":"10.1038/s41566-025-01751-9","url":null,"abstract":"Light-induced phase transitions offer a method to dynamically modulate topological states in bulk complex materials. Yet, next-generation devices demand nanoscale architectures with contact resistances near the quantum limit and precise control over local electronic properties. The layered material WTe2 has gained attention as a probable Weyl semimetal, with topologically protected linear electronic band crossings hosting massless chiral fermions. Here we demonstrate a local phase transition facilitated by the light-induced shear motion of a single atomic layer at the surface of bulk WTe2, thereby opening the door to nanoscale device concepts. Ultrafast terahertz fields enhanced at the apex of an atomically sharp tip couple to the key interlayer shear mode of WTe2 via a ferroelectric dipole at the interface, inducing a structural phase transition at the surface to a metastable state. Subatomically resolved differential imaging, combined with hybrid-level density functional theory, reveals a shift of 7 ± 3 pm in the top atomic plane. Tunnelling spectroscopy links electronic changes across the phase transition with the electron and hole pockets in the band structure, suggesting a reversible, light-induced annihilation of the topologically protected Fermi arc surface states in the top atomic layer. A terahertz field exceeding 1 V nm−1 induced a structural phase transition in the top atomic layer of a bulk WTe2 crystal. Differential imaging revealed a surface shift of 7 ± 3 pm and an electronic signature consistent with a topological phase transition.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1048-1055"},"PeriodicalIF":32.9,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145067869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2025-09-16DOI: 10.1038/s41566-025-01750-w
Gang Wang, Ling Lu
{"title":"Topological microwave isolator with >100-dB isolation","authors":"Gang Wang, Ling Lu","doi":"10.1038/s41566-025-01750-w","DOIUrl":"10.1038/s41566-025-01750-w","url":null,"abstract":"Microwave isolators, developed after World War II, are essential non-reciprocal devices widely used to minimize signal reflections and interference across various applications, including mobile base stations, satellite communications, radar systems, magnetic resonance imaging and industrial microwave heating. A typical commercial microwave isolator provides 20 dB of isolation, reducing the backward power by two orders of magnitude. Although higher isolation is always desired for systems that require greater power or lower noise, such as superconducting quantum computing, further reduction in the backward signal will inevitably lead to an unacceptable degradation in the forward transmission in traditional designs. Here we introduce the principle of a topological isolator, based on a unique one-way edge waveguide that spatially separates forward and backward waves, allowing for the complete absorption of the backward-propagating mode without compromising any forward signal. This ideal isolation mechanism produces an unprecedented isolation level, analytically derived to be 200 dB within a single-wavelength-size device. It is limited only by the evanescent fields within the topological bandgap in the ferrite material that spans two octaves around 10 GHz. We experimentally demonstrate this topological isolator in a stripline configuration with a minimal insertion loss of 1 dB and a backward signal deeply attenuated to the instrument noise floor. This results in an ultrahigh isolation exceeding 100 dB—an eight-orders-of-magnitude improvement over conventional counterparts. Our work not only paves the way for higher-performance isolators in the aforementioned technologies but also sets the stage for innovation in a variety of related microwave components. Although typical microwave isolators provide 20 dB of isolation, a topological isolator—based on a one-way edge waveguide—enables 100 dB isolation due to the near-complete absorption of the backward-propagating mode. In theory, 200 dB of isolation is possible within a single-wavelength-size device.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1064-1069"},"PeriodicalIF":32.9,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145067868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2025-09-12DOI: 10.1038/s41566-025-01753-7
Ryoto Sekine, Robert M. Gray, Luis Ledezma, Selina Zhou, Qiushi Guo, Alireza Marandi
{"title":"Multi-octave frequency comb from an ultra-low-threshold nanophotonic parametric oscillator","authors":"Ryoto Sekine, Robert M. Gray, Luis Ledezma, Selina Zhou, Qiushi Guo, Alireza Marandi","doi":"10.1038/s41566-025-01753-7","DOIUrl":"https://doi.org/10.1038/s41566-025-01753-7","url":null,"abstract":"<p>Ultra-broadband frequency combs coherently unite distant portions of the electromagnetic spectrum. They underpin discoveries in ultra-fast science and serve as the building blocks of modern photonic technologies. Despite tremendous progress in integrated sources of frequency combs, achieving multi-octave operation on chip has remained elusive mainly because of the energy demand of typical spectral broadening processes. Here we break this barrier and demonstrate multi-octave frequency comb generation using an optical parametric oscillator in nanophotonic lithium niobate with only femtojoules of pump energy. Leveraging this ultra-low threshold and dispersion engineering, we accessed a previously unexplored optical parametric oscillator regime that enables highly efficient and stable coherent spectral broadening. We achieve orders-of-magnitude reduction in the energy requirement compared with the other techniques, confirm the coherence of the comb, and present a path towards more efficient and wider spectral broadening. Our results pave the way for ultra-short-pulse and ultra-broadband on-chip nonlinear photonic systems for numerous applications.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"73 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145035712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}