Nature PhotonicsPub Date : 2023-05-29DOI: 10.1038/s41566-023-01217-w
Nathan Youngblood, Carlos A. Ríos Ocampo, Wolfram H. P. Pernice, Harish Bhaskaran
{"title":"Integrated optical memristors","authors":"Nathan Youngblood, Carlos A. Ríos Ocampo, Wolfram H. P. Pernice, Harish Bhaskaran","doi":"10.1038/s41566-023-01217-w","DOIUrl":"10.1038/s41566-023-01217-w","url":null,"abstract":"Memristors in electronics have shown the potential for a range of applications, ranging from circuit elements to neuromorphic computing. In recent years, the ability to vary the conductance of a channel in electronics has enabled in-memory computing, thus leading to substantial interest in memristors. Optical analogues will require modulation of the transmission of light in a semicontinuous and nonvolatile manner. With the proliferation of photonic computing, such an optical analogue, which involves modulating the optical response in integrated circuits while maintaining the modulated state afterwards, is being pursued using a range of functional materials. Here we review recent progress in this important and emerging aspect of photonic integrated circuits and provide an overview of the current state of the art. Optical memristors are of particular interest for applications in high-bandwidth neuromorphic computing, machine learning hardware and artificial intelligence, as these optical analogues of memristors allow for technology that combines the ultrafast, high-bandwidth communication of optics with local information processing. Optical analogues of electronic memristors are desirable for applications including photonic artificial intelligence and computing platforms. Here, recent progress on integrated optical memristors is reviewed.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 7","pages":"561-572"},"PeriodicalIF":35.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49180012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2023-05-29DOI: 10.1038/s41566-023-01220-1
Salim B. Ivars, Yaroslav V. Kartashov, P. Fernández de Córdoba, J. Alberto Conejero, Lluis Torner, Carles Milián
{"title":"Photonic snake states in two-dimensional frequency combs","authors":"Salim B. Ivars, Yaroslav V. Kartashov, P. Fernández de Córdoba, J. Alberto Conejero, Lluis Torner, Carles Milián","doi":"10.1038/s41566-023-01220-1","DOIUrl":"10.1038/s41566-023-01220-1","url":null,"abstract":"Taming the instabilities inherent to many nonlinear optical phenomena is of paramount importance for modern photonics. In particular, the so-called snake instability is universally known to severely distort localized wave stripes, leading to the occurrence of transient, short-lived dynamical states that eventually decay. This phenomenon is ubiquitous in nonlinear science—from river meandering to superfluids—and so far it apparently remains uncontrollable; however, here we show that optical snake instabilities can be harnessed by a process that leads to the formation of stationary and robust two-dimensional zigzag states. We find that such a new type of nonlinear waves exists in the hyperbolic regime of cylindrical microresonators, and that it naturally corresponds to two-dimensional frequency combs featuring spectral heterogeneity and intrinsic synchronization. We uncover the conditions of the existence of such spatiotemporal photonic snakes and confirm their remarkable robustness against perturbations. Our findings represent a new paradigm for frequency comb generation, thus opening the door to a whole range of applications in communications, metrology and spectroscopy. By tuning the spatial width, the strength and the frequency of a pump beam in two-dimensional cylindrical microcavities supporting stable, robust photonic snake states, a set of broadband and perfectly synchronized two-dimensional frequency combs can be realized.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 9","pages":"767-774"},"PeriodicalIF":35.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49650202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2023-05-25DOI: 10.1038/s41566-023-01214-z
Filip Sośnicki, Michał Mikołajczyk, Ali Golestani, Michał Karpiński
{"title":"Interface between picosecond and nanosecond quantum light pulses","authors":"Filip Sośnicki, Michał Mikołajczyk, Ali Golestani, Michał Karpiński","doi":"10.1038/s41566-023-01214-z","DOIUrl":"10.1038/s41566-023-01214-z","url":null,"abstract":"Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently. To bridge the ultrafast and slow classes of quantum-information-processing systems, a Fresnel time lens is developed by using a wideband electro-optic phase modulator combined with a dispersion element. The single-photon spectral bandwidth is compressed from picosecond to nanosecond timescales.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 9","pages":"761-766"},"PeriodicalIF":35.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46444000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Demonstration of the quantum principle of least action with single photons","authors":"Yong-Li Wen, Yunfei Wang, Li-Man Tian, Shanchao Zhang, Jianfeng Li, Jing-Song Du, Hui Yan, Shi-Liang Zhu","doi":"10.1038/s41566-023-01212-1","DOIUrl":"10.1038/s41566-023-01212-1","url":null,"abstract":"The principle of least action is arguably the most fundamental principle in physics as it can be used to derive the equations of motion in various branches of physics. However, this principle has not been experimentally demonstrated at the quantum level because the propagators for Feynman’s path integrals have never been observed. The propagator is a fundamental concept and contains various significant properties of a quantum system in the path integral formulation, so its experimental observation is itself essential in quantum mechanics. Here we theoretically propose and experimentally observe the propagators of single photons based on the method of directly measuring quantum wave functions. Furthermore, we obtain the classical trajectories of single photons in free space and in a harmonic trap based on the extremum of the observed propagators, thereby experimentally demonstrating the quantum principle of least action. Our work paves the way for experimentally exploring the fundamental problems of quantum theory in the formulation of path integrals. Propagators of single photons based on directly measuring quantum wave functions are experimentally observed. Classical trajectories that satisfy the principle of least action are successfully extracted in the case of free space and harmonic potential.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 8","pages":"717-722"},"PeriodicalIF":35.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49008384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2023-05-18DOI: 10.1038/s41566-023-01219-8
Noriaki Horiuchi
{"title":"Photonics blossoms in Japan","authors":"Noriaki Horiuchi","doi":"10.1038/s41566-023-01219-8","DOIUrl":"10.1038/s41566-023-01219-8","url":null,"abstract":"Progress in high-performance tandem solar cells and quantum cascade laser light sources were highlights of the Japan Society of Applied Physics Spring Meeting.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 6","pages":"468-469"},"PeriodicalIF":35.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47617212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient radioactive gas detection by scintillating porous metal–organic frameworks","authors":"Matteo Orfano, Jacopo Perego, Francesca Cova, Charl X. Bezuidenhout, Sergio Piva, Christophe Dujardin, Benoit Sabot, Sylvie Pierre, Pavlo Mai, Christophe Daniel, Silvia Bracco, Anna Vedda, Angiolina Comotti, Angelo Monguzzi","doi":"10.1038/s41566-023-01211-2","DOIUrl":"10.1038/s41566-023-01211-2","url":null,"abstract":"Natural and anthropogenic gas radionuclides such as radon, xenon, hydrogen and krypton isotopes must be monitored to be managed as pathogenic agents, radioactive diagnostic agents or nuclear activity indicators. State-of-the-art detectors based on liquid scintillators suffer from laborious preparation and limited solubility for gases, which affect the accuracy of the measurements. The actual challenge is to find solid scintillating materials simultaneously capable of concentrating radioactive gases and efficiently producing visible light revealed with high sensitivity. The high porosity, combined with the use of scintillating building blocks in metal–organic frameworks (MOFs), offers the possibility to satisfy these requisites. We demonstrate the capability of a hafnium-based MOF incorporating dicarboxy-9,10-diphenylanthracene as a scintillating conjugated ligand to detect gas radionuclides. Metal–organic frameworks show fast scintillation, a fluorescence yield of ∼40%, and accessible porosity suitable for hosting noble gas atoms and ions. Adsorption and detection of 85Kr, 222Rn and 3H radionuclides are explored through a newly developed device that is based on a time coincidence technique. Metal–organic framework crystalline powder demonstrated an improved sensitivity, showing a linear response down to a radioactivity value below 1 kBq m−3 for 85Kr, which outperforms commercial devices. These results support the possible use of scintillating porous MOFs to fabricate sensitive detectors of natural and anthropogenic radionuclides. Detection of gas radionuclides is limited in sensitivity with present methods, but may be useful in energy, security, medical and other sectors. In this work, gas-concentrating porous scintillating metal–organic frameworks are demonstrated for gas radionuclide detection.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 8","pages":"672-678"},"PeriodicalIF":35.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01211-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46065803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2023-05-15DOI: 10.1038/s41566-023-01208-x
Dekang Chen, Stephen D. March, Andrew H. Jones, Yang Shen, Adam A. Dadey, Keye Sun, J. Andrew McArthur, Alec M. Skipper, Xingjun Xue, Bingtian Guo, Junwu Bai, Seth R. Bank, Joe C. Campbell
{"title":"Photon-trapping-enhanced avalanche photodiodes for mid-infrared applications","authors":"Dekang Chen, Stephen D. March, Andrew H. Jones, Yang Shen, Adam A. Dadey, Keye Sun, J. Andrew McArthur, Alec M. Skipper, Xingjun Xue, Bingtian Guo, Junwu Bai, Seth R. Bank, Joe C. Campbell","doi":"10.1038/s41566-023-01208-x","DOIUrl":"10.1038/s41566-023-01208-x","url":null,"abstract":"The fast development of mid-wave infrared photonics has increased the demand for high-performance photodetectors that operate in this spectral range. However, the signal-to-noise ratio, regarded as a primary figure of merit for mid-wave infrared detection, is strongly limited by the high dark current in narrow-bandgap materials. Therefore, conventional mid-wave infrared photodetectors such as HgCdTe require cryogenic temperatures to avoid excessively high dark current. To address this challenge, we report an avalanche photodiode design using photon-trapping structures to enhance the quantum efficiency and minimize the absorber thickness to suppress the dark current. The device exhibits high quantum efficiency and dark current density that is nearly three orders of magnitude lower than that of the state-of-the-art HgCdTe avalanche photodiodes and nearly two orders lower than that of previously reported AlInAsSb avalanche photodiodes that operate at 2 µm. Additionally, the bandwidth of these avalanche photodiodes reaches ~7 GHz, and the gain–bandwidth product is over 200 GHz; both are more than four times those of previously reported 2 µm avalanche photodiodes. We demonstrate an avalanche photodiode design using photon-trapping structures to enhance the quantum efficiency and minimizing the absorber thickness, yielding high quantum efficiency, suppressed dark current density and bandwidth of ~7 GHz.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 7","pages":"594-600"},"PeriodicalIF":35.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01208-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42698636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2023-05-08DOI: 10.1038/s41566-023-01207-y
Kostiantyn Sakhatskyi, Bekir Turedi, Gebhard J. Matt, Erfu Wu, Anastasiia Sakhatska, Vitalii Bartosh, Muhammad Naufal Lintangpradipto, Rounak Naphade, Ivan Shorubalko, Omar F. Mohammed, Sergii Yakunin, Osman M. Bakr, Maksym V. Kovalenko
{"title":"Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity","authors":"Kostiantyn Sakhatskyi, Bekir Turedi, Gebhard J. Matt, Erfu Wu, Anastasiia Sakhatska, Vitalii Bartosh, Muhammad Naufal Lintangpradipto, Rounak Naphade, Ivan Shorubalko, Omar F. Mohammed, Sergii Yakunin, Osman M. Bakr, Maksym V. Kovalenko","doi":"10.1038/s41566-023-01207-y","DOIUrl":"10.1038/s41566-023-01207-y","url":null,"abstract":"A major thrust of medical X-ray imaging is to minimize the X-ray dose acquired by the patient, down to single-photon sensitivity. Such characteristics have been demonstrated with only a few direct-detection semiconductor materials such as CdTe and Si; nonetheless, their industrial deployment in medical diagnostics is still impeded by elaborate and costly fabrication processes. Hybrid lead halide perovskites can be a viable alternative owing to their facile solution growth. However, hybrid perovskites are unstable under high-field biasing in X-ray detectors, owing to structural lability and mixed electronic–ionic conductivity. Here we show that both single-photon-counting and long-term stable performance of perovskite X-ray detectors are attained in the photovoltaic mode of operation at zero-voltage bias, employing thick and uniform methylammonium lead iodide single-crystal films (up to 300 µm) and solution directly grown on hole-transporting electrodes. The operational device stability exceeded one year. Detection efficiency of 88% and noise-equivalent dose of 90 pGyair are obtained with 18 keV X-rays, allowing single-photon-sensitive, low-dose and energy-resolved X-ray imaging. Array detectors demonstrate high spatial resolution up to 11 lp mm−1. These findings pave the path for the implementation of hybrid perovskites in low-cost, low-dose commercial detector arrays for X-ray imaging. We show perovskite X-ray detection at zero-voltage bias with operational device stability exceeding one year. Detection efficiency of 88% and noise-equivalent dose of 90 pGyair are obtained with 18 keV X-rays, allowing single-photon-sensitive, low-dose and energy-resolved X-ray imaging.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 6","pages":"510-517"},"PeriodicalIF":35.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01207-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48761173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2023-05-05DOI: 10.1038/s41566-023-01210-3
Rachel Won
{"title":"Take me out to the ball game","authors":"Rachel Won","doi":"10.1038/s41566-023-01210-3","DOIUrl":"10.1038/s41566-023-01210-3","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 5","pages":"380-380"},"PeriodicalIF":35.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49024916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}