Shiekh Zia Uddin, Nicholas Rivera, Devin Seyler, Jamison Sloan, Yannick Salamin, Charles Roques-Carmes, Shutao Xu, Michelle Y. Sander, Ido Kaminer, Marin Soljačić
{"title":"Noise-immune quantum correlations of intense light","authors":"Shiekh Zia Uddin, Nicholas Rivera, Devin Seyler, Jamison Sloan, Yannick Salamin, Charles Roques-Carmes, Shutao Xu, Michelle Y. Sander, Ido Kaminer, Marin Soljačić","doi":"10.1038/s41566-025-01677-2","DOIUrl":null,"url":null,"abstract":"<p>Lasers with high intensity generally exhibit strong intensity fluctuations far above the shot-noise level. Taming this noise is pivotal to a wide range of applications, both classical and quantum. Here we demonstrate the creation of intense light with quantum levels of noise even when starting from inputs with large amounts of excess noise. In particular, we demonstrate how intense squeezed light with intensities approaching 0.1 TW cm<sup>−</sup><sup>2</sup>, but noise at or below the shot-noise level, can be produced from noisy inputs associated with high-power amplified laser sources (an overall noise reduction of 30-fold). On the basis of a new theory of quantum noise in multimode systems, we show that the ability to generate quantum light from noisy inputs results from multimode quantum correlations, which maximally decouple the output light from the dominant noise channels in the input light. As an example, we demonstrate this effect for femtosecond pulses in nonlinear fibres, but the noise-immune correlations that enable our results are generic to many other nonlinear systems in optics and beyond.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"121 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01677-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lasers with high intensity generally exhibit strong intensity fluctuations far above the shot-noise level. Taming this noise is pivotal to a wide range of applications, both classical and quantum. Here we demonstrate the creation of intense light with quantum levels of noise even when starting from inputs with large amounts of excess noise. In particular, we demonstrate how intense squeezed light with intensities approaching 0.1 TW cm−2, but noise at or below the shot-noise level, can be produced from noisy inputs associated with high-power amplified laser sources (an overall noise reduction of 30-fold). On the basis of a new theory of quantum noise in multimode systems, we show that the ability to generate quantum light from noisy inputs results from multimode quantum correlations, which maximally decouple the output light from the dominant noise channels in the input light. As an example, we demonstrate this effect for femtosecond pulses in nonlinear fibres, but the noise-immune correlations that enable our results are generic to many other nonlinear systems in optics and beyond.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.