Yunxiang Song, Yaowen Hu, Xinrui Zhu, Keith Powell, Letícia Magalhães, Fan Ye, Hana K. Warner, Shengyuan Lu, Xudong Li, Dylan Renaud, Norman Lippok, Di Zhu, Benjamin Vakoc, Mian Zhang, Neil Sinclair, Marko Lončar
{"title":"Integrated electro-optic digital-to-analogue link for efficient computing and arbitrary waveform generation","authors":"Yunxiang Song, Yaowen Hu, Xinrui Zhu, Keith Powell, Letícia Magalhães, Fan Ye, Hana K. Warner, Shengyuan Lu, Xudong Li, Dylan Renaud, Norman Lippok, Di Zhu, Benjamin Vakoc, Mian Zhang, Neil Sinclair, Marko Lončar","doi":"10.1038/s41566-025-01719-9","DOIUrl":null,"url":null,"abstract":"The rapid growth in artificial intelligence and modern communication systems demands innovative solutions for increased computational power and advanced signalling capabilities. Integrated photonics, leveraging the analogue nature of electromagnetic waves at the chip scale, offers a promising complement to approaches based on digital electronics. To fully unlock their potential as analogue processors, establishing a common technological base between conventional digital electronics and analogue photonics is imperative for building next-generation computing and communications systems. However, the absence of an efficient interface has thus far critically challenged a comprehensive demonstration of the advantages of analogue photonic hardware, with the scalability, speed and energy consumption as primary bottlenecks. Here we address this challenge and demonstrate a general electro-optic digital-to-analogue link enabled using foundry-based lithium niobate nanophotonics. Using purely digital electronic inputs, we achieve the on-demand generation of both analogue optical and electronic waveforms at information rates of up to 186 Gb s−1. The optical waveforms address the digital-to-analogue electro-optic conversion challenge in photonic computing, showcasing high-fidelity Modified National Institute of Standards and Technology image encoding with an ultralow power consumption of 0.058 pJ b−1. The electronic waveforms enable a pulse-shaping-free microwave arbitrary waveform generation method with ultrabroadband tunable delay and gain. Our results pave the way for efficient and compact digital-to-analogue conversion paradigms enabled by integrated photonics, and underscore the transformative impact that analogue photonic hardware may have on various applications, such as computing, optical interconnects and high-speed ranging. Using the well-established foundry-based lithium niobate nanophotonics platform, a general electro-optic digital-to-analogue link with ultrahigh bandwidth (>150 Gb s−1) and ultralow power consumption (0.058 pJ b−1) is demonstrated, providing a direct, energy-efficient, high-speed and scalable solution for interfacing digital electronics and photonics.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 10","pages":"1107-1115"},"PeriodicalIF":32.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-025-01719-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth in artificial intelligence and modern communication systems demands innovative solutions for increased computational power and advanced signalling capabilities. Integrated photonics, leveraging the analogue nature of electromagnetic waves at the chip scale, offers a promising complement to approaches based on digital electronics. To fully unlock their potential as analogue processors, establishing a common technological base between conventional digital electronics and analogue photonics is imperative for building next-generation computing and communications systems. However, the absence of an efficient interface has thus far critically challenged a comprehensive demonstration of the advantages of analogue photonic hardware, with the scalability, speed and energy consumption as primary bottlenecks. Here we address this challenge and demonstrate a general electro-optic digital-to-analogue link enabled using foundry-based lithium niobate nanophotonics. Using purely digital electronic inputs, we achieve the on-demand generation of both analogue optical and electronic waveforms at information rates of up to 186 Gb s−1. The optical waveforms address the digital-to-analogue electro-optic conversion challenge in photonic computing, showcasing high-fidelity Modified National Institute of Standards and Technology image encoding with an ultralow power consumption of 0.058 pJ b−1. The electronic waveforms enable a pulse-shaping-free microwave arbitrary waveform generation method with ultrabroadband tunable delay and gain. Our results pave the way for efficient and compact digital-to-analogue conversion paradigms enabled by integrated photonics, and underscore the transformative impact that analogue photonic hardware may have on various applications, such as computing, optical interconnects and high-speed ranging. Using the well-established foundry-based lithium niobate nanophotonics platform, a general electro-optic digital-to-analogue link with ultrahigh bandwidth (>150 Gb s−1) and ultralow power consumption (0.058 pJ b−1) is demonstrated, providing a direct, energy-efficient, high-speed and scalable solution for interfacing digital electronics and photonics.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.