Nature Photonics最新文献

筛选
英文 中文
Full-field Brillouin microscopy based on an imaging Fourier-transform spectrometer
IF 35 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-20 DOI: 10.1038/s41566-025-01619-y
Carlo Bevilacqua, Robert Prevedel
{"title":"Full-field Brillouin microscopy based on an imaging Fourier-transform spectrometer","authors":"Carlo Bevilacqua, Robert Prevedel","doi":"10.1038/s41566-025-01619-y","DOIUrl":"https://doi.org/10.1038/s41566-025-01619-y","url":null,"abstract":"<p>Brillouin microscopy is an emerging optical elastography technique that can be used to assess mechanical properties of biological samples in a three-dimensional, all-optical and hence non-contact fashion. However, the low cross-section of spontaneous Brillouin scattering produces weak signals that often necessitate prolonged exposure times or illumination dosages that are potentially harmful for biological samples. Here we present a new approach for highly multiplexed and therefore rapid spectral acquisition of the Brillouin-scattered light. Specifically, by exploiting a custom-built Fourier-transform imaging spectrometer and the symmetric properties of the Brillouin spectrum, we experimentally demonstrate full-field 2D spectral Brillouin imaging of phantoms as well as biological samples, at a throughput of up to 40,000 spectra per second, with a precision of ~70 MHz and an effective 2D image acquisition speed of 0.1 Hz over a ~300 × 300 µm<sup>2</sup> field of view. This represents an approximately three-orders-of-magnitude improvement in speed and throughput compared with standard confocal methods, while retaining high spatial resolution and the capability to acquire three-dimensional images of photosensitive samples in biology and medicine.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"22 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vernier microcombs for integrated optical atomic clocks
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-19 DOI: 10.1038/s41566-025-01617-0
Kaiyi Wu, Nathan P. O’Malley, Saleha Fatema, Cong Wang, Marcello Girardi, Mohammed S. Alshaykh, Zhichao Ye, Daniel E. Leaird, Minghao Qi, Victor Torres-Company, Andrew M. Weiner
{"title":"Vernier microcombs for integrated optical atomic clocks","authors":"Kaiyi Wu,&nbsp;Nathan P. O’Malley,&nbsp;Saleha Fatema,&nbsp;Cong Wang,&nbsp;Marcello Girardi,&nbsp;Mohammed S. Alshaykh,&nbsp;Zhichao Ye,&nbsp;Daniel E. Leaird,&nbsp;Minghao Qi,&nbsp;Victor Torres-Company,&nbsp;Andrew M. Weiner","doi":"10.1038/s41566-025-01617-0","DOIUrl":"10.1038/s41566-025-01617-0","url":null,"abstract":"Kerr microcombs have drawn substantial interest as mass-manufacturable, compact alternatives to bulk frequency combs. This could enable the deployment of many comb-reliant applications previously confined to laboratories. Particularly enticing is the prospect of microcombs performing optical frequency division in compact optical atomic clocks. Unfortunately, it is difficult to meet the self-referencing requirement of microcombs in these systems owing to the approximately terahertz repetition rates typically required for octave-spanning comb generation. In addition, it is challenging to spectrally engineer a microcomb system to align a comb mode with an atomic clock transition with a sufficient signal-to-noise ratio. Here we adopt a Vernier dual-microcomb scheme for optical frequency division of a stabilized ultranarrow-linewidth continuous-wave laser at 871 nm to an ~235 MHz output frequency. This scheme enables shifting an ultrahigh-frequency (~100 GHz) carrier-envelope offset beat down to frequencies where detection is possible and simultaneously placing a comb line close to the 871 nm laser—tuned so that, if frequency doubled, it would fall close to the clock transition in 171Yb+. Our dual-comb system can potentially combine with an integrated ion trap towards future chip-scale optical atomic clocks. By pairing an octave-spanning terahertz microcomb with a terahertz Vernier microcomb, a continuous-wave laser at 871 nm is frequency divided to a radiofrequency clock output at 235 MHz. This laser is designed for frequency doubling to reach the ytterbium ion clock transition at 435.5 nm.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 4","pages":"400-406"},"PeriodicalIF":32.3,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-025-01617-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Optical atomic clock interrogation using an integrated spiral cavity laser
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-17 DOI: 10.1038/s41566-025-01643-y
William Loh, David Reens, Dave Kharas, Alkesh Sumant, Connor Belanger, Ryan T. Maxson, Alexander Medeiros, William Setzer, Dodd Gray, Kyle DeBry, Colin D. Bruzewicz, Jason Plant, John Liddell, Gavin N. West, Sagar Doshi, Matthew Roychowdhury, May E. Kim, Danielle Braje, Paul W. Juodawlkis, John Chiaverini, Robert McConnell
{"title":"Publisher Correction: Optical atomic clock interrogation using an integrated spiral cavity laser","authors":"William Loh,&nbsp;David Reens,&nbsp;Dave Kharas,&nbsp;Alkesh Sumant,&nbsp;Connor Belanger,&nbsp;Ryan T. Maxson,&nbsp;Alexander Medeiros,&nbsp;William Setzer,&nbsp;Dodd Gray,&nbsp;Kyle DeBry,&nbsp;Colin D. Bruzewicz,&nbsp;Jason Plant,&nbsp;John Liddell,&nbsp;Gavin N. West,&nbsp;Sagar Doshi,&nbsp;Matthew Roychowdhury,&nbsp;May E. Kim,&nbsp;Danielle Braje,&nbsp;Paul W. Juodawlkis,&nbsp;John Chiaverini,&nbsp;Robert McConnell","doi":"10.1038/s41566-025-01643-y","DOIUrl":"10.1038/s41566-025-01643-y","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 3","pages":"335-335"},"PeriodicalIF":32.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-025-01643-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding and manipulating the crystallization of Sn–Pb perovskites for efficient all-perovskite tandem solar cells
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-14 DOI: 10.1038/s41566-025-01616-1
Xuke Yang, Tianjun Ma, Haojun Hu, Wenjiang Ye, Xin Li, Mingyu Li, Afei Zhang, Ciyu Ge, Xianglang Sun, Yongxin Zhu, Shuyu Yan, Jun Yan, Ying Zhou, Zhong’an Li, Chao Chen, Haisheng Song, Jiang Tang
{"title":"Understanding and manipulating the crystallization of Sn–Pb perovskites for efficient all-perovskite tandem solar cells","authors":"Xuke Yang,&nbsp;Tianjun Ma,&nbsp;Haojun Hu,&nbsp;Wenjiang Ye,&nbsp;Xin Li,&nbsp;Mingyu Li,&nbsp;Afei Zhang,&nbsp;Ciyu Ge,&nbsp;Xianglang Sun,&nbsp;Yongxin Zhu,&nbsp;Shuyu Yan,&nbsp;Jun Yan,&nbsp;Ying Zhou,&nbsp;Zhong’an Li,&nbsp;Chao Chen,&nbsp;Haisheng Song,&nbsp;Jiang Tang","doi":"10.1038/s41566-025-01616-1","DOIUrl":"10.1038/s41566-025-01616-1","url":null,"abstract":"All-perovskite tandem solar cells are promising as next-generation high-efficiency photovoltaic devices. However, further progress in tin-lead (Sn–Pb) mixed perovskites, which are essential as the narrow-bandgap bottom sub-cell, is hampered by unbalanced crystallization processes, leading to inhomogeneous films and reduced power conversion efficiency (PCE). Here we provide a complete understanding of the formation of Sn–Pb films, from the precursor solution to the final film. We find that the total crystallization barrier for Sn-based perovskites is limited by the desorption of dimethyl sulfoxide (DMSO), while Pb-based perovskites experience a smaller DMSO desorption barrier. By engineering the reaction barrier in mixed films via tailoring the DMSO content, we obtain synchronous Sn–Pb perovskite crystallization and high-quality homogeneous films. On the basis of this understanding, we demonstrate single-junction Sn–Pb perovskite solar cells with a PCE of 22.88% and all-perovskite tandem devices with a certified PCE of 28.87%, fabricated by antisolvent-free methods. The unencapsulated tandem devices retain 87% of their initial PCE after about 450 h with maximum power point tracking under 1 sun illumination. By engineering the crystallization process of Sn–Pb mixed perovskite films, all-perovskite tandem solar cells fabricated using an antisolvent-free method deliver a certified power conversion efficiency of 28.87% and retain 87% of this efficiency after 450 h of operation.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 4","pages":"426-433"},"PeriodicalIF":32.3,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143417926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All-optical image transportation through a multimode fibre using a miniaturized diffractive neural network on the distal facet
IF 35 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-07 DOI: 10.1038/s41566-025-01621-4
Haoyi Yu, Zihao Huang, Simone Lamon, Baokai Wang, Haibo Ding, Jian Lin, Qi Wang, Haitao Luan, Min Gu, Qiming Zhang
{"title":"All-optical image transportation through a multimode fibre using a miniaturized diffractive neural network on the distal facet","authors":"Haoyi Yu, Zihao Huang, Simone Lamon, Baokai Wang, Haibo Ding, Jian Lin, Qi Wang, Haitao Luan, Min Gu, Qiming Zhang","doi":"10.1038/s41566-025-01621-4","DOIUrl":"https://doi.org/10.1038/s41566-025-01621-4","url":null,"abstract":"<p>The direct optical transportation of images through multimode fibres (MMFs) is highly sought after in compact photonic systems for MMF-based optical information processing. However, MMFs are highly scattering media, thus degrading information transmitted through them. Existing approaches utilize artificial neural networks or spatial light modulators to reconstruct images scrambled after propagation through the fibre. Despite these advances, achieving direct optical image transportation through MMFs using integrated optical elements with micrometre-scale footprints remains challenging. Here we develop a miniaturized diffractive neural network (DN<sub>2</sub>s) integrated on the distal facet of a MMF for the direct all-optical image transportation through the fibre. The DN<sub>2</sub>s has a footprint of 150 μm by 150 μm and is fabricated on the facet of a 0.35-m-long MMF using three-dimensional two-photon nanolithography. The fibre-integrated DN<sub>2</sub>s enables single-shot optical transportation of images with flat phases in real time for a constant configuration of the MMF. The system achieves a minimum image reconstruction feature size of approximately 4.90 μm over a field of view 65 μm by 65 μm when imaging handwritten digits. Transfer learning is also demonstrated by the direct optical transportation of HeLa cell images projected by spatial light modulators, which were not part of the training dataset. The concept and implementation pave the way to the integration of miniaturized DN<sub>2</sub>s with MMFs for compact photonic systems with unprecedented functionalities.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"140 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143258074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A resonant tone for photonic time crystals
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-05 DOI: 10.1038/s41566-024-01612-x
Zeki Hayran, Francesco Monticone
{"title":"A resonant tone for photonic time crystals","authors":"Zeki Hayran,&nbsp;Francesco Monticone","doi":"10.1038/s41566-024-01612-x","DOIUrl":"10.1038/s41566-024-01612-x","url":null,"abstract":"Using resonant structures can enhance one of the key features of photonic time crystals while easing practical challenges, bringing their realization at optical frequencies closer to reality and unlocking potential applications in light amplification and next-generation photonic technologies.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"126-128"},"PeriodicalIF":32.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taming twisted light with topology
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-05 DOI: 10.1038/s41566-024-01611-y
Ren-Min Ma, Hong-Yi Luan
{"title":"Taming twisted light with topology","authors":"Ren-Min Ma,&nbsp;Hong-Yi Luan","doi":"10.1038/s41566-024-01611-y","DOIUrl":"10.1038/s41566-024-01611-y","url":null,"abstract":"Mode coupling and purity degradation have long challenged vortex photonics. A topological disclination lattice waveguide with dual topological protections now offers a solution, enabling robust vortex transmission and precise mode filtering.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"124-125"},"PeriodicalIF":32.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143192148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking an optical bistability switch
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-05 DOI: 10.1038/s41566-024-01610-z
Jiaye Chen, Xiaogang Liu
{"title":"Unlocking an optical bistability switch","authors":"Jiaye Chen,&nbsp;Xiaogang Liu","doi":"10.1038/s41566-024-01610-z","DOIUrl":"10.1038/s41566-024-01610-z","url":null,"abstract":"An intrinsic optical bistability, independent of thermal effects, is identified in Nd3+-doped photon avalanching nanoparticles at low temperatures, enabling high-contrast, transistor-like optical responses.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"122-123"},"PeriodicalIF":32.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetically driven photonic ‘microbots’
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-05 DOI: 10.1038/s41566-025-01615-2
David Pile
{"title":"Magnetically driven photonic ‘microbots’","authors":"David Pile","doi":"10.1038/s41566-025-01615-2","DOIUrl":"10.1038/s41566-025-01615-2","url":null,"abstract":"","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"131-131"},"PeriodicalIF":32.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143192159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H. Jeffrey Kimble (1949–2024)
IF 32.3 1区 物理与天体物理
Nature Photonics Pub Date : 2025-02-05 DOI: 10.1038/s41566-025-01628-x
Eugene Polzik, Jun Ye
{"title":"H. Jeffrey Kimble (1949–2024)","authors":"Eugene Polzik,&nbsp;Jun Ye","doi":"10.1038/s41566-025-01628-x","DOIUrl":"10.1038/s41566-025-01628-x","url":null,"abstract":"Champion experimentalist of quantum optics and squeezed-light pioneer has sadly passed away.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 2","pages":"120-121"},"PeriodicalIF":32.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-025-01628-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143192161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信