Nature PhotonicsPub Date : 2024-10-31DOI: 10.1038/s41566-024-01559-z
Giampaolo Pitruzzello
{"title":"Optical biosensors towards the clinic","authors":"Giampaolo Pitruzzello","doi":"10.1038/s41566-024-01559-z","DOIUrl":"10.1038/s41566-024-01559-z","url":null,"abstract":"Nature Photonics spoke with Hatice Altug, from the École Polytechnique Fédérale de Lausanne (EPFL), Thomas Krauss, from the University of York, and Malini Olivo from the Agency for Science, Technology and Research (A*STAR) about optical biosensors and their prospects and challenges for clinical translation.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1126-1128"},"PeriodicalIF":32.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2024-10-31DOI: 10.1038/s41566-024-01558-0
Ye Zhang, David D. Xu, Ibrahim Tanriover, Wenjie Zhou, Yuanwei Li, Rafael López-Arteaga, Koray Aydin, Chad A. Mirkin
{"title":"Nonlinear optical colloidal metacrystals","authors":"Ye Zhang, David D. Xu, Ibrahim Tanriover, Wenjie Zhou, Yuanwei Li, Rafael López-Arteaga, Koray Aydin, Chad A. Mirkin","doi":"10.1038/s41566-024-01558-0","DOIUrl":"https://doi.org/10.1038/s41566-024-01558-0","url":null,"abstract":"<p>Atomic and molecular structure inversion symmetry breaking in naturally occurring crystals dictate their physical properties including nonlinear optical (NLO) effects, piezo- or ferroelectricity, and non-reciprocal charge transport behaviour. With metamaterials composed of nanoscale building blocks (that is, meta-atoms), the spatial inversion symmetry violation on planar surfaces leads to spin-controlled photonics as well as NLO metasurfaces. Synthetically, low-symmetry 3D metacrystals can be synthesized, but NLO behaviour has not been identified so far (for example, harmonic generations). Herein we show how DNA-mediated assembly of octahedron-shaped plasmonic gold nanocrystals can be used to design and deliberately synthesize non-centrosymmetric and centrosymmetric colloidal crystals. Importantly, while the centrosymmetric structures do not exhibit substantial second-harmonic generation, the non-centrosymmetric crystals do—a consequence of the asymmetric distribution of localized electric fields in plasmonic hotspots. Moreover, this non-centrosymmetric NLO metacrystal represents a 3D NLO metamaterial being developed via a bottom-up approach, exhibiting a maximum second-harmonic generation conversion efficiency of 10<sup>−9</sup> to surpass the efficiencies observed in the majority of plasmonic 2D metasurfaces. Finally, the DNA-loading density on the particle building blocks can be used to toggle between the centrosymmetric and non-centrosymmetric phases.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"16 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2024-10-31DOI: 10.1038/s41566-024-01554-4
Stepan Bulanov
{"title":"Light–matter interactions driven by lasers at highest intensities","authors":"Stepan Bulanov","doi":"10.1038/s41566-024-01554-4","DOIUrl":"10.1038/s41566-024-01554-4","url":null,"abstract":"The interaction of electrons and photons lies at the very foundation of quantum electrodynamics. However, if an electron is able to scatter off several hundred photons, provided by a high-power laser, new physical phenomena come into play. This might pave a way for future light sources and photon–photon colliders.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1131-1132"},"PeriodicalIF":32.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2024-10-31DOI: 10.1038/s41566-024-01553-5
Daria Smirnova, Alexander B. Khanikaev
{"title":"Twisted topological light illuminates molecular chirality","authors":"Daria Smirnova, Alexander B. Khanikaev","doi":"10.1038/s41566-024-01553-5","DOIUrl":"10.1038/s41566-024-01553-5","url":null,"abstract":"A nonlinear optical response to a new form of light, dubbed chiral topological light owing to its local chirality and global topological characteristics, is enabling unprecedented enantiosensitivity and robustness of chiro-optical spectroscopies as a result of structured light–matter interactions at deep subwavelength scales.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1133-1134"},"PeriodicalIF":32.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2024-10-28DOI: 10.1038/s41566-024-01547-3
Nikhil Pramanik, Sunchao Huang, Ruihuan Duan, Qingwei Zhai, Michael Go, Chris Boothroyd, Zheng Liu, Liang Jie Wong
{"title":"Fundamental scaling laws of water-window X-rays from free-electron-driven van der Waals structures","authors":"Nikhil Pramanik, Sunchao Huang, Ruihuan Duan, Qingwei Zhai, Michael Go, Chris Boothroyd, Zheng Liu, Liang Jie Wong","doi":"10.1038/s41566-024-01547-3","DOIUrl":"10.1038/s41566-024-01547-3","url":null,"abstract":"Water-window X-rays are crucial in medical and biological applications, enabling the natural-contrast imaging of biological cells without external staining. However, water-window X-ray sources with bespoke photon energies—needed in high-contrast imaging—remain challenging to obtain, except at large synchrotron facilities. Here we address this challenge by demonstrating tabletop, water-window X-ray generation from free-electron-driven van der Waals materials, enabling the continuous tuning of photon energies across the entire water-window regime. Additionally, we present a truly predictive theoretical framework combining first-principles electromagnetism with Monte Carlo simulations to accurately predict the photon flux and brightness in absolute quantities. We obtain fundamental scaling laws for the tunable photon flux, matching the experimental results and providing a way to design powerful emitters based on free-electron-driven quantum materials. We show that we can potentially achieve photon fluxes needed for imaging and spectroscopy applications (over 108 photons s–1 on the sample—verified by our framework based on our experimentally achieved fluxes of about 103 photons s–1 using ~50 nA current). Importantly, our theory highlights the critical role played by the large mean free paths and interlayer atomic spacings unique to van der Waals structures, showing the latter’s advantages over other materials in generating water-window X-rays. Tabletop, water-window X-rays are generated using free-electron-driven van der Waals materials. The X-ray energy from the source can be tuned across the water window, and the established fundamental scaling laws for the tunable photon flux may enable the design of powerful emitters based on free-electron-driven quantum materials.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1203-1211"},"PeriodicalIF":32.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2024-10-28DOI: 10.1038/s41566-024-01541-9
Xin Zhang, Shengfan Wu, Hong Zhang, Alex K. Y. Jen, Yiqiang Zhan, Junhao Chu
{"title":"Advances in inverted perovskite solar cells","authors":"Xin Zhang, Shengfan Wu, Hong Zhang, Alex K. Y. Jen, Yiqiang Zhan, Junhao Chu","doi":"10.1038/s41566-024-01541-9","DOIUrl":"10.1038/s41566-024-01541-9","url":null,"abstract":"Considerable efforts are being made to advance inverted (p–i–n) perovskite solar cells (PSCs). Several passivation and insulation strategies have effectively been applied to reduce non-radiative recombination, a notorious issue for PSCs. Consequently, the performance of inverted PSCs has begun to rival those of regular (n–i–p) PSCs, with power conversion efficiency (PCE) values above 26%. The efficiency of tandem solar cells containing an inverted PSC as a subcell has also grown rapidly, reaching >33%. This Review discusses the origin of non-radiative recombinations in PSCs and recent progress in reducing them. We review how innovative device configurations, perovskite composition and interfacial engineering contribute to the high efficiency and long-term operational stability of inverted PSCs. We aim to provide readers with important insights into materials chemistry, physical processing and device configurations to further improve perovskite-based photovoltaics. The authors review recent advances in inverted perovskite solar cells, with a focus on non-radiative recombination processes and how to reduce them for highly efficient and stable devices.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 12","pages":"1243-1253"},"PeriodicalIF":32.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2024-10-23DOI: 10.1038/s41566-024-01549-1
Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang, Galan Moody, John E. Bowers, Nathan Youngblood
{"title":"Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing","authors":"Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang, Galan Moody, John E. Bowers, Nathan Youngblood","doi":"10.1038/s41566-024-01549-1","DOIUrl":"https://doi.org/10.1038/s41566-024-01549-1","url":null,"abstract":"<p>Processing information in the optical domain promises advantages in both speed and energy efficiency over existing digital hardware for a variety of emerging applications in artificial intelligence and machine learning. A typical approach to photonic processing is to multiply a rapidly changing optical input vector with a matrix of fixed optical weights. However, encoding these weights on-chip using an array of photonic memory cells is currently limited by a wide range of material- and device-level issues, such as the programming speed, extinction ratio and endurance, among others. Here we propose a new approach to encoding optical weights for in-memory photonic computing using magneto-optic memory cells comprising heterogeneously integrated cerium-substituted yttrium iron garnet (Ce:YIG) on silicon micro-ring resonators. We show that leveraging the non-reciprocal phase shift in such magneto-optic materials offers several key advantages over existing architectures, providing a fast (1 ns), efficient (143 fJ per bit) and robust (2.4 billion programming cycles) platform for on-chip optical processing.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"109 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2024-10-21DOI: 10.1038/s41566-024-01548-2
Anchit Srivastava, Andreas Herbst, Mahdi M. Bidhendi, Max Kieker, Francesco Tani, Hanieh Fattahi
{"title":"Near-petahertz fieldoscopy of liquid","authors":"Anchit Srivastava, Andreas Herbst, Mahdi M. Bidhendi, Max Kieker, Francesco Tani, Hanieh Fattahi","doi":"10.1038/s41566-024-01548-2","DOIUrl":"10.1038/s41566-024-01548-2","url":null,"abstract":"Measuring transient optical fields is pivotal not only for understanding ultrafast phenomena but also for the quantitative detection of various molecular species in a sample. Here we demonstrate near-petahertz electric field detection of a few femtosecond pulses with 200 attosecond temporal resolution and subfemtojoule detection sensitivity. By field-resolved detection of the impulsively excited molecules in the liquid phase, termed femtosecond fieldoscopy, we demonstrate temporal isolation of the response of the target molecules from those of the environment and the excitation pulse. In a proof-of-concept analysis of aqueous and liquid samples, we demonstrate field-sensitive detection of combination bands of 4.13 μmol ethanol for the first time. This method expands the scope of aqueous sample analysis to higher detection sensitivity and dynamic range, while the simultaneous direct measurements of phase and intensity information pave the path towards high-resolution biological spectro-microscopy. Near-petahertz electric field detection of few-femtosecond pulses with a temporal resolution of 200 attoseconds and subfemtojoule sensitivity is experimentally demonstrated, paving the path towards high-resolution biological spectro-microscopy.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 12","pages":"1320-1326"},"PeriodicalIF":32.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01548-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PhotonicsPub Date : 2024-10-21DOI: 10.1038/s41566-024-01537-5
Michael P. Nielsen, Andreas Pusch, Phoebe M. Pearce, Muhammad H. Sazzad, Peter J. Reece, Martin A. Green, Nicholas J. Ekins-Daukes
{"title":"Semiconductor thermoradiative power conversion","authors":"Michael P. Nielsen, Andreas Pusch, Phoebe M. Pearce, Muhammad H. Sazzad, Peter J. Reece, Martin A. Green, Nicholas J. Ekins-Daukes","doi":"10.1038/s41566-024-01537-5","DOIUrl":"10.1038/s41566-024-01537-5","url":null,"abstract":"Power can be generated from radiative exchange between two bodies with different temperatures—from the radiative cooling of the Earth’s surface into space, for example. Thermoradiative diodes are low-bandgap optoelectronic devices in which the occupancies of the valence and conduction bands are established through radiative exchange with the external environment. A warm diode viewing cold surroundings will spontaneously develop a reverse electrical bias, which, combined with the recombination current from the radiative imbalance, generates electrical power. Here we review the operating principles of the thermoradiative diode in both the radiative limit and in the presence of non-radiative processes. We discuss some present limitations and opportunities for improved performance together with potential applications such as night-sky power generation and waste-heat recovery. This article reviews the concept of using thermoradiative diodes for power conversion, and discusses potential applications such as night-sky power generation and waste-heat recovery.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 11","pages":"1137-1146"},"PeriodicalIF":32.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}