{"title":"片上可编程非线性","authors":"Fei Xia","doi":"10.1038/s41566-025-01710-4","DOIUrl":null,"url":null,"abstract":"Programmable nonlinearities — including control over the response order up to high orders — can now be realized on-chip at ultralow power via field programmability. This advance paves the way for more scalable and energy-efficient photonic computing in applications such as machine learning, optical signal processing and communications, analogue computing and quantum photonics.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"27 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-chip programmable nonlinearity\",\"authors\":\"Fei Xia\",\"doi\":\"10.1038/s41566-025-01710-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Programmable nonlinearities — including control over the response order up to high orders — can now be realized on-chip at ultralow power via field programmability. This advance paves the way for more scalable and energy-efficient photonic computing in applications such as machine learning, optical signal processing and communications, analogue computing and quantum photonics.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-025-01710-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01710-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Programmable nonlinearities — including control over the response order up to high orders — can now be realized on-chip at ultralow power via field programmability. This advance paves the way for more scalable and energy-efficient photonic computing in applications such as machine learning, optical signal processing and communications, analogue computing and quantum photonics.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.