Laszlo Veisz, Peter Fischer, Sajjad Vardast, Fritz Schnur, Alexander Muschet, Aitor De Andres, Sreehari Kaniyeri, Hang Li, Roushdey Salh, Kárpát Ferencz, Gergely Norbert Nagy, Subhendu Kahaly
{"title":"Waveform-controlled field synthesis of sub-two-cycle pulses at the 100 TW peak power level","authors":"Laszlo Veisz, Peter Fischer, Sajjad Vardast, Fritz Schnur, Alexander Muschet, Aitor De Andres, Sreehari Kaniyeri, Hang Li, Roushdey Salh, Kárpát Ferencz, Gergely Norbert Nagy, Subhendu Kahaly","doi":"10.1038/s41566-025-01720-2","DOIUrl":null,"url":null,"abstract":"<p>Ultrahigh peak-power laser systems with pulse durations of tens of femtoseconds are widely used as drivers for compact sources of particles and secondary radiation. Conversely, lasers with shorter (a few femtoseconds) pulse durations and lower peak powers enable the generation of isolated attosecond light pulses to study nature with unparalleled temporal resolution. Here we report an enhanced optical parametric chirped pulse amplifier system that produces light pulses with a peak power of about 100 TW and a pulse duration as short as 4.3 fs with full waveform control. Coherent field synthesis generates a broadband spectrum, spanning from the visible to the near infrared, through three cascaded amplification stages, each housing two optical parametric amplifiers that sequentially boost complementary spectral regions. The resulting light transients are waveform-stabilized to <300 mrad and focused to an intensity of 10<sup>21</sup> W cm<sup>−2</sup> and exhibit an outstanding high dynamic range in temporal contrast. Together, these characteristics render the system well suited for demanding relativistic laser–plasma experiments. Utilizing temporal super-resolution, the pulses are shortened to sub-4-fs duration. This platform is dedicated to advancing the frontiers of attosecond electron and X-ray sources.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"28 1","pages":""},"PeriodicalIF":32.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-025-01720-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrahigh peak-power laser systems with pulse durations of tens of femtoseconds are widely used as drivers for compact sources of particles and secondary radiation. Conversely, lasers with shorter (a few femtoseconds) pulse durations and lower peak powers enable the generation of isolated attosecond light pulses to study nature with unparalleled temporal resolution. Here we report an enhanced optical parametric chirped pulse amplifier system that produces light pulses with a peak power of about 100 TW and a pulse duration as short as 4.3 fs with full waveform control. Coherent field synthesis generates a broadband spectrum, spanning from the visible to the near infrared, through three cascaded amplification stages, each housing two optical parametric amplifiers that sequentially boost complementary spectral regions. The resulting light transients are waveform-stabilized to <300 mrad and focused to an intensity of 1021 W cm−2 and exhibit an outstanding high dynamic range in temporal contrast. Together, these characteristics render the system well suited for demanding relativistic laser–plasma experiments. Utilizing temporal super-resolution, the pulses are shortened to sub-4-fs duration. This platform is dedicated to advancing the frontiers of attosecond electron and X-ray sources.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.