Nature nanotechnology最新文献

筛选
英文 中文
On-demand nanoengineering of in-plane ferroelectric topologies 面内铁电拓扑的按需纳米工程
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-26 DOI: 10.1038/s41565-024-01792-1
Marti Checa, Bharat Pant, Alexander Puretzky, Bogdan Dryzhakov, Rama K. Vasudevan, Yongtao Liu, Pravin Kavle, Arvind Dasgupta, Lane W. Martin, Ye Cao, Liam Collins, Stephen Jesse, Neus Domingo, Kyle P. Kelley
{"title":"On-demand nanoengineering of in-plane ferroelectric topologies","authors":"Marti Checa, Bharat Pant, Alexander Puretzky, Bogdan Dryzhakov, Rama K. Vasudevan, Yongtao Liu, Pravin Kavle, Arvind Dasgupta, Lane W. Martin, Ye Cao, Liam Collins, Stephen Jesse, Neus Domingo, Kyle P. Kelley","doi":"10.1038/s41565-024-01792-1","DOIUrl":"https://doi.org/10.1038/s41565-024-01792-1","url":null,"abstract":"<p>Hierarchical assemblies of ferroelectric nanodomains, so-called super-domains, can exhibit exotic morphologies that lead to distinct behaviours. Controlling these super-domains reliably is critical for realizing states with desired functional properties. Here we reveal the super-switching mechanism by using a biased atomic force microscopy tip, that is, the switching of the in-plane super-domains, of a model ferroelectric Pb<sub>0.6</sub>Sr<sub>0.4</sub>TiO<sub>3</sub>. We demonstrate that the writing process is dominated by a super-domain nucleation and stabilization process. A complex scanning-probe trajectory enables on-demand formation of intricate centre-divergent, centre-convergent and flux-closure polar structures. Correlative piezoresponse force microscopy and optical spectroscopy confirm the topological nature and tunability of the emergent structures. The precise and versatile nanolithography in a ferroic material and the stability of the generated structures, also validated by phase-field modelling, suggests potential for reliable multi-state nanodevice architectures and, thereby, an alternative route for the creation of tunable topological structures for applications in neuromorphic circuits.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"191 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled single-electron transfer enables time-resolved excited-state spectroscopy of individual molecules 受控单电子转移实现了单个分子的时间分辨激发态光谱学
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-26 DOI: 10.1038/s41565-024-01791-2
Lisanne Sellies, Jakob Eckrich, Leo Gross, Andrea Donarini, Jascha Repp
{"title":"Controlled single-electron transfer enables time-resolved excited-state spectroscopy of individual molecules","authors":"Lisanne Sellies, Jakob Eckrich, Leo Gross, Andrea Donarini, Jascha Repp","doi":"10.1038/s41565-024-01791-2","DOIUrl":"https://doi.org/10.1038/s41565-024-01791-2","url":null,"abstract":"<p>An increasing number of scanning-probe-based spectroscopic techniques provides access to diverse electronic properties of single molecules. Typically, these experiments can only study a subset of all electronic transitions, which obscures the unambiguous assignment of measured quantities to specific quantum transitions. Here we develop a single-molecule spectroscopy that enables the access to many quantum transitions of different types, including radiative, non-radiative and redox, that is, charge-related, transitions. Our method relies on controlled alternating single-charge attachment and detachment. For read-out, the spin states are mapped to charge states, which we can detect by atomic force microscopy. We can determine the relative energies of ground and excited states of an individual molecule and can prepare the molecule in defined excited states. After a proof-of-principle demonstration of the technique on pentacene, we apply it to PTCDA, the scanning-probe luminescence of which has been interpreted controversially. The method may be used to guide, understand and engineer tip-induced chemical reactions as well as phosphorescence and fluorescence of individual molecules.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"11 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour vaccination outcomes 对肿瘤源性细胞外囊泡上的免疫侵袭配体进行非歧视性工程掩蔽可提高肿瘤疫苗接种效果
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-26 DOI: 10.1038/s41565-024-01783-2
Xianguang Ding, JingJing Zhang, Shuangshuang Wan, Xu Wang, Zhiyu Wang, Kefeng Pu, Mao Wang, Yi Cao, Lixing Weng, Houjuan Zhu, Fei Peng, Jie Chao, Renjun Pei, David Tai Leong, Lianhui Wang
{"title":"Non-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour vaccination outcomes","authors":"Xianguang Ding, JingJing Zhang, Shuangshuang Wan, Xu Wang, Zhiyu Wang, Kefeng Pu, Mao Wang, Yi Cao, Lixing Weng, Houjuan Zhu, Fei Peng, Jie Chao, Renjun Pei, David Tai Leong, Lianhui Wang","doi":"10.1038/s41565-024-01783-2","DOIUrl":"https://doi.org/10.1038/s41565-024-01783-2","url":null,"abstract":"<p>The success of personalized cancer immunotherapy depends on the initial tumour antigenic presentation to dendritic cells and macrophages. Tumour-derived extracellular vesicles (TEVs) contain abundant tumour antigenic molecules. The presence of anti-phagocytotic signals such as cluster of differentiation 47 (CD47) on the surface of the TEVs, however, leads to evasion of the same dendritic cells and macrophages. Here we show that iron oxide hydroxide nanocomposites can successfully mask TEV surfaces and unblock phagocytosis without affecting extracellular vesicles’ elicited immune goals. After internalization, the mask disintegrates in the lysosome, releasing the tumour antigenic cargo. This triggers antigen presentation and promotes dendritic cell activation and maturation and macrophage reprogramming in animal models, leading to a drastic reduction of tumour volume and metastasis, and in human malignant pleural effusion clinical samples. This straightforward masking strategy eliminates the ubiquitous anti-phagocytosis block found in clinical samples and can be applied universally across all patient-specific TEVs as tumour antigenic agents for enhanced immunotherapy.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"36 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels 机械化学介导的胶体液态金属用于千瓦级电子设备冷却
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-26 DOI: 10.1038/s41565-024-01793-0
Kai Wu, Zhengli Dou, Shibo Deng, Die Wu, Bin Zhang, Haobo Yang, Runlai Li, Chuxin Lei, Yongzheng Zhang, Qiang Fu, Guihua Yu
{"title":"Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels","authors":"Kai Wu, Zhengli Dou, Shibo Deng, Die Wu, Bin Zhang, Haobo Yang, Runlai Li, Chuxin Lei, Yongzheng Zhang, Qiang Fu, Guihua Yu","doi":"10.1038/s41565-024-01793-0","DOIUrl":"https://doi.org/10.1038/s41565-024-01793-0","url":null,"abstract":"<p>Electronic systems and devices operating at significant power levels demand sophisticated solutions for heat dissipation. Although materials with high thermal conductivity hold promise for exceptional thermal transport across nano- and microscale interfaces under ideal conditions, their performance often falls short by several orders of magnitude in the complex thermal interfaces typical of real-world applications. This study introduces mechanochemistry-mediated colloidal liquid metals composed of Galinstan and aluminium nitride to bridge the practice–theory disparity. These colloids demonstrate thermal resistances of between 0.42 and 0.86 mm<sup>2</sup> K W<sup>−1</sup> within actual thermal interfaces, outperforming leading thermal conductors by over an order of magnitude. This superior performance is attributed to the gradient heterointerface with efficient thermal transport across liquid–solid interfaces and the notable colloidal thixotropy. In practical devices, experimental results demonstrate their capacity to extract 2,760 W of heat from a 16 cm<sup>2</sup> thermal source when coupled with microchannel cooling, and can facilitate a 65% reduction in pump electricity consumption. This advancement in thermal interface technology offers a promising solution for efficient and sustainable cooling of devices operating at kilowatt levels.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"57 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-efficient picosecond spin–orbit torque magnetization switching in ferro- and ferrimagnetic films 铁磁性和铁磁性薄膜中的高能效皮秒自旋-轨道力矩磁化切换
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-26 DOI: 10.1038/s41565-024-01788-x
Eva Díaz, Alberto Anadón, Pablo Olleros-Rodríguez, Harjinder Singh, Héloïse Damas, Paolo Perna, Martina Morassi, Aristide Lemaître, Michel Hehn, Jon Gorchon
{"title":"Energy-efficient picosecond spin–orbit torque magnetization switching in ferro- and ferrimagnetic films","authors":"Eva Díaz, Alberto Anadón, Pablo Olleros-Rodríguez, Harjinder Singh, Héloïse Damas, Paolo Perna, Martina Morassi, Aristide Lemaître, Michel Hehn, Jon Gorchon","doi":"10.1038/s41565-024-01788-x","DOIUrl":"https://doi.org/10.1038/s41565-024-01788-x","url":null,"abstract":"<p>Electrical current pulses can be used to manipulate magnetization efficiently via spin–orbit torques. Pulse durations as short as a few picoseconds have been used to switch the magnetization of ferromagnetic films, reaching the terahertz regime. However, little is known about the reversal mechanisms and energy requirements in the ultrafast switching regime. In this work we quantify the energy cost for magnetization reversal over seven orders of magnitude in pulse duration, in both ferromagnetic and ferrimagnetic samples, bridging quasi-static spintronics and femtomagnetism. To this end, we develop a method to stretch picosecond pulses generated by a photoconductive switch by an order of magnitude. Thereby we can create current pulses from picoseconds to durations approaching the pulse width available with commercial instruments. We show that the energy cost for spin–orbit torque switching decreases by more than an order of magnitude in all samples when the pulse duration enters the picosecond range. We project an energy cost of 9 fJ for a 100 × 100 nm<sup>2</sup> ferrimagnetic device. Micromagnetic and macrospin simulations unveil a transition from a non-coherent to a coherent magnetization reversal with a strong modification of the magnetization dynamical trajectories as pulse duration is reduced. Our results show the potential for high-speed magnetic spin–orbit torque memories and highlight alternative magnetization reversal pathways at fast timescales.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"24 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Playing electron ping-pong with the excited states of a single molecule 与单个分子的激发态玩电子乒乓球
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-26 DOI: 10.1038/s41565-024-01776-1
Harry Mönig
{"title":"Playing electron ping-pong with the excited states of a single molecule","authors":"Harry Mönig","doi":"10.1038/s41565-024-01776-1","DOIUrl":"https://doi.org/10.1038/s41565-024-01776-1","url":null,"abstract":"A complex experiment based on atomic force microscopy provides the quantitative energy-level diagram of a single molecule.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"203 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for developing T cell-based therapies 利用氧化石墨烯抗原递呈平台进行仿生细胞刺激,开发基于 T 细胞的疗法
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-23 DOI: 10.1038/s41565-024-01781-4
Enbo Zhu, Jiaji Yu, Yan-Ruide Li, Feiyang Ma, Yu-Chen Wang, Yang Liu, Miao Li, Yu Jeong Kim, Yichen Zhu, Zoe Hahn, Yang Zhou, James Brown, Yuchong Zhang, Matteo Pelegrini, Tzung Hsiai, Lili Yang, Yu Huang
{"title":"Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for developing T cell-based therapies","authors":"Enbo Zhu, Jiaji Yu, Yan-Ruide Li, Feiyang Ma, Yu-Chen Wang, Yang Liu, Miao Li, Yu Jeong Kim, Yichen Zhu, Zoe Hahn, Yang Zhou, James Brown, Yuchong Zhang, Matteo Pelegrini, Tzung Hsiai, Lili Yang, Yu Huang","doi":"10.1038/s41565-024-01781-4","DOIUrl":"https://doi.org/10.1038/s41565-024-01781-4","url":null,"abstract":"<p>Chimeric antigen receptor (CAR)-engineered T cells represent a front-line therapy for cancers. However, the current CAR T cell manufacturing protocols do not adequately reproduce immunological synapse formation. Here, in response to this limitation, we have developed a flexible graphene oxide antigen-presenting platform (GO-APP) that anchors antibodies onto graphene oxide. By decorating anti-CD3 (αCD3) and anti-CD28 (αCD28) on graphene oxide (GO-APP<sup>3/28</sup>), we achieved remarkable T cell proliferation. In vitro interactions between GO-APP<sup>3/28</sup> and T cells closely mimic the in vivo immunological synapses between antigen-presenting cells and T cells. This immunological synapse mimicry shows a high capacity for stimulating T cell proliferation while preserving their multifunctionality and high potency. Meanwhile, it enhances CAR gene-engineering efficiency, yielding a more than fivefold increase in CAR T cell production compared with the standard protocol. Notably, GO-APP<sup>3/28</sup> stimulated appropriate autocrine interleukin-2 (IL-2) in T cells and overcame the in vitro reliance on external IL-2 supplementation, offering an opportunity to culture T cell-based products independent of IL-2 supplementation.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"50 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cuproptosis nanocapsule for cancer radiotherapy 用于癌症放射治疗的杯突纳米胶囊
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-19 DOI: 10.1038/s41565-024-01784-1
You Liao, Dongmei Wang, Chenglu Gu, Xue Wang, Shuang Zhu, Ziye Zheng, Fuquan Zhang, Junfang Yan, Zhanjun Gu
{"title":"A cuproptosis nanocapsule for cancer radiotherapy","authors":"You Liao, Dongmei Wang, Chenglu Gu, Xue Wang, Shuang Zhu, Ziye Zheng, Fuquan Zhang, Junfang Yan, Zhanjun Gu","doi":"10.1038/s41565-024-01784-1","DOIUrl":"https://doi.org/10.1038/s41565-024-01784-1","url":null,"abstract":"<p>Residual tumours that persist after radiotherapy often develop acquired radiation resistance, increasing the risk of recurrence and metastasis while providing obstacles to re-irradiation. Using samples from patients and experimental mice, we discovered that FDX1 and LIAS, key regulators of cuproptosis, were up-regulated in residual tumours following radiotherapy, conferring the increased sensitivity to cuproptosis. Therefore, we proposed a novel radiosensitization strategy focused on cuproptosis, using a copper-containing nanocapsule-like polyoxometalate as a paradigm. In an initial demonstration, we showed that the nanocapsule released copper ions in a controlled manner upon exposure to ionizing radiation. Furthermore, radiation-triggered cuproptosis overcame acquired radiation resistance even at clinically relevant radiation doses and activated a robust abscopal effect, with a 40% cure rate in both radioresistant and re-irradiation tumour models. Collectively, targeting cuproptosis is a compelling strategy for addressing acquired radiation resistance, optimizing the local antitumour effects of radiotherapy while simultaneously activating systemic antitumour immunity.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"186 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printed photonic crystals with a complete bandgap in the visible range 在可见光范围内具有完整带隙的 3D 打印光子晶体
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-19 DOI: 10.1038/s41565-024-01782-3
{"title":"3D printed photonic crystals with a complete bandgap in the visible range","authors":"","doi":"10.1038/s41565-024-01782-3","DOIUrl":"https://doi.org/10.1038/s41565-024-01782-3","url":null,"abstract":"A customized Ti-Nano resin is used to fabricate 3D photonic crystals with a complete bandgap in the visible spectrum through a nanoscale printing technique. The 3D printed and annealed titania photonic crystals show perfect reflectance within the wavelength range associated with this bandgap.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"2 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes 利用富含胆固醇的外泌体通过细胞膜融合直接在细胞膜上递送 siRNA
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2024-09-19 DOI: 10.1038/s41565-024-01785-0
Yan Zhuo, Zhen Luo, Zhu Zhu, Jie Wang, Xiang Li, Zhuan Zhang, Cong Guo, Bingqi Wang, Di Nie, Yong Gan, Guoqing Hu, Miaorong Yu
{"title":"Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes","authors":"Yan Zhuo, Zhen Luo, Zhu Zhu, Jie Wang, Xiang Li, Zhuan Zhang, Cong Guo, Bingqi Wang, Di Nie, Yong Gan, Guoqing Hu, Miaorong Yu","doi":"10.1038/s41565-024-01785-0","DOIUrl":"https://doi.org/10.1038/s41565-024-01785-0","url":null,"abstract":"<p>Efficient cytosolic delivery is a significant hurdle when using short interfering RNA (siRNA) in therapeutic applications. Here we show that cholesterol-rich exosomes are prone to entering cancer cells through membrane fusion, achieving direct cytosolic delivery of siRNA. Molecular dynamics simulations suggest that deformation and increased contact with the target cell membrane facilitate membrane fusion. In vitro we show that cholesterol-enriched milk-derived exosomes (MEs) achieve a significantly higher gene silencing effect of siRNA, inducing superior cancer cell apoptosis compared with the native and cholesterol-depleted MEs, as well as conventional transfection agents. When administered orally or intravenously to mice bearing orthotopic or subcutaneous tumours, the cholesterol-enriched MEs/siRNA exhibit antitumour activity superior to that of lipid nanoparticles. Collectively, by modulating the cholesterol content of exosome membranes to facilitate cell entry via membrane fusion, we provide a promising approach for siRNA-based gene therapy, paving the way for effective, safe and simple gene therapy strategies.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"64 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信