Xueting Pan, Zhihang Wang, Mixiao Tan, Ziying Fu, Guangjun Nie, Hai Wang
{"title":"Nanoinducer-mediated mitochondria-selective degradation enhances T cell immunotherapy against multiple cancers","authors":"Xueting Pan, Zhihang Wang, Mixiao Tan, Ziying Fu, Guangjun Nie, Hai Wang","doi":"10.1038/s41565-025-01909-0","DOIUrl":"https://doi.org/10.1038/s41565-025-01909-0","url":null,"abstract":"<p>Cancer immunotherapy utilizing cytotoxic T lymphocytes has demonstrated significant promise in clinical applications, but cancer immunosuppressive mechanisms hamper further progress in T cell immunotherapy. Here we show a correlation between cancer cell mitochondrial content and their resistance to immunotherapy. Observing that cancer cells with higher mitochondrial content show increased resistance to CD8<sup>+</sup> T cells, we developed mitochondrial nanoinducers designed to selectively target and degrade mitochondria within autophagosomes. The direct degradation of mitochondria not only enhances the recognition and activation of CD8<sup>+</sup> T cells but also increases the susceptibility of cancer cells to CD8<sup>+</sup> T cell-mediated cytotoxicity. We demonstrated the feasibility and efficacy of this strategy in multiple in vitro and in vivo tumour therapeutic models. This nanoinducer, designed to manipulate cellular mitochondrial degradation, holds promise as a versatile tool for enhancing adoptive T cell therapy, CAR-T cell therapy and tumour-vaccine-based immunotherapy.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"55 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144104503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Degrading cancer cell mitochondria to improve T cell-mediated killing","authors":"Luca Simula, Emmanuel Donnadieu","doi":"10.1038/s41565-025-01928-x","DOIUrl":"https://doi.org/10.1038/s41565-025-01928-x","url":null,"abstract":"A nano-enabled strategy that reduces the mitochondrial content of cancer cells boosts immunotherapy outcomes in several animal cancer models.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"33 4 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144104500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A collagenase nanogel backpack improves CAR-T cell therapy outcomes in pancreatic cancer","authors":"Zhipeng Zhao, Qian Li, Chenghao Qu, Zeyu Jiang, Guoqing Jia, Gongde Lan, Yuxia Luan","doi":"10.1038/s41565-025-01924-1","DOIUrl":"https://doi.org/10.1038/s41565-025-01924-1","url":null,"abstract":"<p>Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of haematological malignancies. Challenges in overcoming physical barriers however greatly limit CAR-T cell efficacy in solid tumours. Here we show that an approach based on collagenase nanogel generally improves the outcome of T cell-based therapies, and specifically of CAR-T cell therapy. The nanogels are created by cross-linking collagenase and subsequently modifying them with a CXCR4 antagonist peptide. These nanogels can bind CAR-T cells via receptor–ligand interaction, resulting in cellular backpack delivery systems. The nanogel backpacks modulate tumoural infiltration and localization of CAR-T cells by surmounting physical barriers and disrupting chemokine-mediated CAR-T cell imprisonment, thereby addressing their navigation deficiency within solid tumours. Our approach offers a promising strategy for pancreatic cancer therapy and holds potential for advancing CAR-T cell therapy towards clinical applications.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"54 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144087906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianhua Wu, Zhongxin Chen, Ke Yang, Xin Zhou, Huizhi Li, Zhiyong Wang, Mengyao Su, Rongrong Zhang, Tie Wang, Qikun Hu, Ning Yan, Cuibo Liu, Bin Zhang, Ming Yang, Shibo Xi, Kian Ping Loh
{"title":"Electric bias-induced reversible configuration of single and heteronuclear dual-atom catalysts on 1Tʹ-MoS2","authors":"Jianhua Wu, Zhongxin Chen, Ke Yang, Xin Zhou, Huizhi Li, Zhiyong Wang, Mengyao Su, Rongrong Zhang, Tie Wang, Qikun Hu, Ning Yan, Cuibo Liu, Bin Zhang, Ming Yang, Shibo Xi, Kian Ping Loh","doi":"10.1038/s41565-025-01934-z","DOIUrl":"https://doi.org/10.1038/s41565-025-01934-z","url":null,"abstract":"<p>The development of substrates capable of anchoring single-atom catalysts (SACs) while enabling their dynamic reconfiguration into heteronuclear dual-atom catalysts (DACs) holds considerable promise for electrochemical synthesis, yet remains underexplored. Here we show that electrochemical desulfurization of MoS<sub>2</sub> generates vacancy-rich 1T′ domains, which support high loadings of Cu (7.9 wt%) and Pt (6.7 wt%) SACs that are well-positioned for dynamic sintering to form DACs. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a voltage-driven, reversible transformation between individual Pt/Cu SACs and Cu–Pt DAC configurations during hydrogen evolution reaction potentials. The electric-field-induced Cu–Pt DACs exhibit superior performance in the selective hydrogenation of alkynes compared with their monometallic SAC counterparts. This work underscores vacancy-enriched 1T′-MoS<sub>2</sub> as a versatile platform for high-density SAC deposition, enabling on-demand structural reconfiguration and paving the way for tailored catalyst design in electrosynthesis.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"40 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144087896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The benefits and risks of PEGylation in nanomedicine","authors":"","doi":"10.1038/s41565-025-01951-y","DOIUrl":"https://doi.org/10.1038/s41565-025-01951-y","url":null,"abstract":"Polyethylene glycol (PEG) is a commonly used coating agent in nanomedicine, but there are growing concerns about its immunogenicity. Two Comment articles discuss the issue and possible alternatives to PEG.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"35 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144087895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yali Wu, Wenjuan Chen, Jingjing Deng, Xinghui Cao, Zimo Yang, Jiangbin Chen, Qi Tan, E. Zhou, Minglei Li, Jiatong Liu, Mengfei Guo, Yang Jin
{"title":"Tumour-derived microparticles obtained through microwave irradiation induce immunogenic cell death in lung adenocarcinoma","authors":"Yali Wu, Wenjuan Chen, Jingjing Deng, Xinghui Cao, Zimo Yang, Jiangbin Chen, Qi Tan, E. Zhou, Minglei Li, Jiatong Liu, Mengfei Guo, Yang Jin","doi":"10.1038/s41565-025-01922-3","DOIUrl":"https://doi.org/10.1038/s41565-025-01922-3","url":null,"abstract":"<p>Tumour-derived microparticles (TMPs), extracellular vesicles traditionally obtained upon ultraviolet (UV) radiation of tumour cells, hold promise in tumour immunotherapies and vaccines and have demonstrated potential as drug delivery systems for tumour treatment. However, concerns remain regarding the limited efficacy and safety of UV-derived TMPs. Here we introduce a microwave (MW)-assisted method for preparing TMPs, termed MW-TMPs. Brief exposure of tumour cells to short-wavelength MW radiation promotes the release of TMPs showing superior in vivo antitumour activity and safety compared with UV-TMPs. MW-TMPs induce immunogenic cell death and reprogramme suppressive tumour immune microenvironments in different lung tumour models, enabling dual targeting of tumour cells by natural killer and T cells. We show that they can efficiently deliver methotrexate to tumours, synergistically boosting the efficacy of PD-L1 blockade. This MW-TMP development strategy is simpler, more efficient and safer than traditional UV-TMP methods.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"30 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144087898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering pyroptotic vesicles as personalized cancer vaccines","authors":"Zhaoting Li, Yixin Wang, Fanyi Mo, Tyler Wolter, Rachel Hong, Allie Barrett, Nathaniel Richmond, Fengyuan Liu, Yu Chen, Xicheng Yang, Lauren Dempsey, Quanyin Hu","doi":"10.1038/s41565-025-01931-2","DOIUrl":"https://doi.org/10.1038/s41565-025-01931-2","url":null,"abstract":"<p>Tumour vaccines are designed to stimulate the host’s immune system against existing tumours or tumour recurrence. However, individual differences, tumour heterogeneity and side effects hinder the applications of current tumour vaccines and require the development of personalized cancer vaccines. To overcome these challenges, we engineered pyroptotic vesicles—extracellular vesicles formed during tumour cell pyroptosis—as a tumour vaccine platform. The extracted pyroptotic vesicles possess abundant tumour antigens and potent immune-stimulating ability and, loaded into a biocompatible hydrogel, they can be implanted into post-surgical tumour cavities to prevent tumour recurrence. The pyroptotic-vesicle-based vaccine outperforms both exosome- and apoptotic-body-based vaccines in inhibiting tumour recurrence and metastasis in different post-surgical mouse models. Mechanistic studies reveal that the pyroptotic-vesicle-based vaccine could stimulate robust antigen-specific dendritic cell and T cell immune responses against both artificial OVA antigens and cancer neoantigens. In sum, our vaccine platform can be tailored to stimulate robust antitumour immune responses for treating individual cancer patients.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"10 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Songyue Chen, Xiujun Fan, Zhaoqi Duan, Yang Luo, Jun Chen
{"title":"A magnetically programmable mesoporous nanoreactor","authors":"Songyue Chen, Xiujun Fan, Zhaoqi Duan, Yang Luo, Jun Chen","doi":"10.1038/s41565-025-01910-7","DOIUrl":"https://doi.org/10.1038/s41565-025-01910-7","url":null,"abstract":"Engineering magnetic nanoparticles at the single-particle level advances nanoreactor design, enabling enhanced active sensing, targeted therapy, and catalytic activity, with broad implications for nano energy and nanomedicine applications.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"42 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144066187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bram Bussin, Marshall G. G. MacDuff, Wayne Ngo, Jamie L. Y. Wu, Zachary P. Lin, Adrian Granda Farias, Benjamin Stordy, Zahra Sepahi, Sara Ahmed, Jason Moffat, Warren C. W. Chan
{"title":"Discovering nanoparticle corona ligands for liver macrophage capture","authors":"Bram Bussin, Marshall G. G. MacDuff, Wayne Ngo, Jamie L. Y. Wu, Zachary P. Lin, Adrian Granda Farias, Benjamin Stordy, Zahra Sepahi, Sara Ahmed, Jason Moffat, Warren C. W. Chan","doi":"10.1038/s41565-025-01903-6","DOIUrl":"https://doi.org/10.1038/s41565-025-01903-6","url":null,"abstract":"<p>Liver macrophages capture circulating nanoparticles and reduce their delivery to target organs. Serum proteins adsorb to the nanoparticle surface after administration. However, the adsorbed serum proteins and their cognate cell receptors for removing nanoparticles from the bloodstream have not been linked. Here we use a multi-omics strategy to identify the adsorbed serum proteins binding to specific liver macrophage receptors. We discovered six absorbed serum proteins that bind to two liver macrophage receptors. Nanoparticle physicochemical properties can affect the degree of the six serum proteins adsorbing to the surface, the probability of binding to cell receptors and whether the liver removes the nanoparticle from circulation. Identifying the six adsorbed proteins allowed us to engineer decoy nanoparticles that prime the liver to take up fewer therapeutic nanoparticles, enabling more nanoparticles for targeting extrahepatic tissues. Elucidating the molecular interactions governing the nanoparticle journey in vivo will enable us to control nanoparticle delivery to diseased tissues.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"232 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}