Chuang Liu, Xiangang Huang, Kok-Siong Chen, Sihan Xiong, Alexey V. Yaremenko, Xueyan Zhen, Xinru You, Filippo Rossignoli, Yi Tang, Seyoung Koo, Wei Chen, Na Kong, Tian Xie, Khalid Shah, Wei Tao
{"title":"Systemic reprogramming of tumour immunity via IL-10-mRNA nanoparticles","authors":"Chuang Liu, Xiangang Huang, Kok-Siong Chen, Sihan Xiong, Alexey V. Yaremenko, Xueyan Zhen, Xinru You, Filippo Rossignoli, Yi Tang, Seyoung Koo, Wei Chen, Na Kong, Tian Xie, Khalid Shah, Wei Tao","doi":"10.1038/s41565-025-01980-7","DOIUrl":null,"url":null,"abstract":"<p>Daily subcutaneous injections of recombinant interleukin-10 (IL-10) demonstrated encouraging but preliminary efficacy in certain tumour types during early phase clinical trials. However, these antitumour effects were not consistently replicated in larger trials, probably due to insufficient intratumoural recombinant IL-10 accumulation, which ultimately restricted clinical benefit. Here we show that intravenous injections of <i>IL-10</i> messenger RNA (mRNA) nanoparticles (<i>IL-10</i>-mRNA@NPs) induce potent immune surveillance across diverse preclinical tumour models and mitigate systemic toxicities. In particular, <i>IL-10</i>-mRNA@NPs sustain in situ IL-10 production within tumours, promoting substantial infiltration and proliferation of cytotoxic T cells, activation and maturation of dendritic cells, and an augmented expression of major histocompatibility complex class I molecules in immunosuppressive orthotopic early stage hepatocellular carcinoma tumours. Moreover, in mice with orthotopic middle-to-late-stage hepatocellular carcinoma tumours, combining <i>IL-10</i>-mRNA@NPs with immune checkpoint blockades results in 43% of mice showing complete tumour eradication and a sixfold increase in median survival compared with mice treated with immune checkpoint blockades alone. Furthermore, this combination induces long-lasting antitumour immune memory, conferring 100% protection against tumour rechallenges. The intravenous <i>IL-10</i>-mRNA@NPs strategy may have potential to overcome the challenges associated with recombinant IL-10 in clinical trials across a broad spectrum of immunosuppressive tumours.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"18 1","pages":""},"PeriodicalIF":34.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01980-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Daily subcutaneous injections of recombinant interleukin-10 (IL-10) demonstrated encouraging but preliminary efficacy in certain tumour types during early phase clinical trials. However, these antitumour effects were not consistently replicated in larger trials, probably due to insufficient intratumoural recombinant IL-10 accumulation, which ultimately restricted clinical benefit. Here we show that intravenous injections of IL-10 messenger RNA (mRNA) nanoparticles (IL-10-mRNA@NPs) induce potent immune surveillance across diverse preclinical tumour models and mitigate systemic toxicities. In particular, IL-10-mRNA@NPs sustain in situ IL-10 production within tumours, promoting substantial infiltration and proliferation of cytotoxic T cells, activation and maturation of dendritic cells, and an augmented expression of major histocompatibility complex class I molecules in immunosuppressive orthotopic early stage hepatocellular carcinoma tumours. Moreover, in mice with orthotopic middle-to-late-stage hepatocellular carcinoma tumours, combining IL-10-mRNA@NPs with immune checkpoint blockades results in 43% of mice showing complete tumour eradication and a sixfold increase in median survival compared with mice treated with immune checkpoint blockades alone. Furthermore, this combination induces long-lasting antitumour immune memory, conferring 100% protection against tumour rechallenges. The intravenous IL-10-mRNA@NPs strategy may have potential to overcome the challenges associated with recombinant IL-10 in clinical trials across a broad spectrum of immunosuppressive tumours.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.