Nature nanotechnology最新文献

筛选
英文 中文
A NICER nanovaccine for cancer immunotherapy 用于癌症免疫治疗的更好的纳米疫苗
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-25 DOI: 10.1038/s41565-025-01953-w
{"title":"A NICER nanovaccine for cancer immunotherapy","authors":"","doi":"10.1038/s41565-025-01953-w","DOIUrl":"https://doi.org/10.1038/s41565-025-01953-w","url":null,"abstract":"NICER is a broad-spectrum nanovaccine (based on a nanovesicle system) that targets both cancer stem-like cells, which drive tumour recurrence, and the bulk tumour cell population. By inhibiting specific enzymes on dendritic cells, NICER enhances effective immune responses against both types of tumour cells.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144479122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the adjuvanticity of lipid nanoparticles by PEG lipid ratio and phospholipid modifications 通过PEG脂质比例和磷脂修饰来剪裁脂质纳米颗粒的佐剂性
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-23 DOI: 10.1038/s41565-025-01958-5
Máté Vadovics, Wenchen Zhao, Emily F. Daley, Kieu Lam, Owen Daly, Khalid Rashid, Hailey R. Lee, Petra Schreiner, Kendall A. Lundgreen, Brian T. Gaudette, Vladimir V. Shuvaev, Evguenia Arguiri, Hiromi Muramatsu, András Sárközy, Thandiswa Mdluli, Junchao Xu, Xuexiang Han, Nina De Luna, Diana Castaño, Emily Bettini, Edit Ábrahám, Zoltan Lipinszki, Giuseppe Carlucci, Avinash Haridas Bansode, Katelyn Nguyen, Thuc M. Le, Tony Luu, Vladimir R. Muzykantov, Paul Bates, David Allman, Michael J. Mitchell, Michela Locci, Caius G. Radu, James Heyes, Norbert Pardi
{"title":"Tailoring the adjuvanticity of lipid nanoparticles by PEG lipid ratio and phospholipid modifications","authors":"Máté Vadovics, Wenchen Zhao, Emily F. Daley, Kieu Lam, Owen Daly, Khalid Rashid, Hailey R. Lee, Petra Schreiner, Kendall A. Lundgreen, Brian T. Gaudette, Vladimir V. Shuvaev, Evguenia Arguiri, Hiromi Muramatsu, András Sárközy, Thandiswa Mdluli, Junchao Xu, Xuexiang Han, Nina De Luna, Diana Castaño, Emily Bettini, Edit Ábrahám, Zoltan Lipinszki, Giuseppe Carlucci, Avinash Haridas Bansode, Katelyn Nguyen, Thuc M. Le, Tony Luu, Vladimir R. Muzykantov, Paul Bates, David Allman, Michael J. Mitchell, Michela Locci, Caius G. Radu, James Heyes, Norbert Pardi","doi":"10.1038/s41565-025-01958-5","DOIUrl":"https://doi.org/10.1038/s41565-025-01958-5","url":null,"abstract":"<p>Lipid nanoparticles (LNPs) represent the leading delivery platform for mRNA vaccines with advantageous biocompatibility, scalability, adjuvant activity and often an acceptable safety profile. Here we investigate the physicochemical characteristics and adjuvanticity of four-component LNPs. Previous vaccine studies have demonstrated that altering the ionizable lipid influences the adjuvanticity of an LNP; however, the impact of the polyethylene glycol lipid and phospholipid has received less attention. Our mRNA–LNP vaccine formulations utilized different phospholipids and varying ratios of polyethylene glycol lipid, whereas the ionizable lipid and cholesterol remained approximately constant. We demonstrate that such modifications impact the magnitude and quality of the vaccine-elicited immune responses. We also dissect the underlying mechanisms and show that the biodistribution and cellular uptake of LNPs correlate with the magnitude and quality of the immune responses. These findings support the rational design of novel LNPs to tailor immune responses (cellular or humoral focused) based on the vaccine application.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144341328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear Nernst effect in trilayer graphene at zero magnetic field 零磁场下三层石墨烯的非线性能子效应
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-23 DOI: 10.1038/s41565-025-01963-8
Hao Liu, Jingru Li, Zhifan Zhang, Jinfeng Zhai, Min Zhang, Hua Jiang, X. C. Xie, Pan He, Jian Shen
{"title":"Nonlinear Nernst effect in trilayer graphene at zero magnetic field","authors":"Hao Liu, Jingru Li, Zhifan Zhang, Jinfeng Zhai, Min Zhang, Hua Jiang, X. C. Xie, Pan He, Jian Shen","doi":"10.1038/s41565-025-01963-8","DOIUrl":"https://doi.org/10.1038/s41565-025-01963-8","url":null,"abstract":"<p>The Nernst effect, that is, the generation of a transverse voltage in response to a temperature gradient, enables thermoelectric energy conversion. In the absence of an external magnetic field, the linear Nernst effect is forbidden in non-magnetic materials because of time-reversal symmetry constraints, but the recently predicted nonlinear Nernst effect (NNE) is allowed. Here we report the experimental observation of the NNE in non-magnetic ABA trilayer graphene, even in the absence of an external magnetic field. This effect is detected via electric harmonic measurements under an alternating temperature gradient at temperatures below 12 K. The NNE exhibits a quadratic dependence on the temperature gradient. It is notably enhanced near the charge neutrality point and reaches a giant effective Nernst coefficient of up to 300 µV K<sup>−1</sup> at 2 K, surpassing the linear coefficients of magnetic materials. Moreover, we establish a scaling law between the NNE and the linear Seebeck effect, confirming the dominance of a skew scattering mechanism in driving the NNE. Our findings demonstrate an alternative approach for thermoelectric energy harvesting and cooling applications via nonlinear thermoelectric responses, which may, in the long run, offer alternative approaches towards the development of advanced thermoelectric devices.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"45 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144341329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes 快速充电碳基纳米孔电极中电吸附离子的中尺度动力学
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-23 DOI: 10.1038/s41565-025-01947-8
Peiyao Wang, Ke Zhang, Jinsha Liao, Xiao Wang, George P. Simon, Jefferson Zhe Liu, Dan Li
{"title":"Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes","authors":"Peiyao Wang, Ke Zhang, Jinsha Liao, Xiao Wang, George P. Simon, Jefferson Zhe Liu, Dan Li","doi":"10.1038/s41565-025-01947-8","DOIUrl":"https://doi.org/10.1038/s41565-025-01947-8","url":null,"abstract":"<p>Electrosorption, the accumulation of electrolyte ions at charged interfaces, is a common phenomenon across various electrochemical systems. Its impact is particularly pronounced in nanoporous electrodes owing to their high surface-to-volume ratios. Although electrosorption alters the ion distribution at the electrode–electrolyte interface through the formation of an electrical double layer, the effects of electrosorbed ions on the charge storage dynamics in nanoporous electrodes and their ability to improve charging processes have often been overlooked. Here we use a multilayered reduced graphene oxide-based membrane as a model nanoporous electrode material, integrating numerical simulations with experimental insights. We monitor the spatiotemporal distribution of electrosorbed ions and electrical potentials across the nanopore network during fast charging of symmetrical laboratory-scale cells using aqueous and non-aqueous electrolyte solutions. This method allowed us to quantitatively assess how features of the nanoporous electrode mesostructure, such as nanoslit size, the distribution of nanoslit sizes and electrode thickness, dynamically influence ion electrosorption and the local electrical and chemical potentials across the network. Our findings reveal that the mesostructure of nanoporous electrodes influences how migration and diffusion currents, mediated by electrosorbed ions, respond to charging rates.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"9 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144341331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colloidal chemistry in tin perovskite 锡钙钛矿中的胶体化学
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-17 DOI: 10.1038/s41565-025-01959-4
Antonio Abate
{"title":"Colloidal chemistry in tin perovskite","authors":"Antonio Abate","doi":"10.1038/s41565-025-01959-4","DOIUrl":"https://doi.org/10.1038/s41565-025-01959-4","url":null,"abstract":"Recent advancements in perovskite colloid engineering have shown promise in overcoming the complex processing challenges of tin-based formulations compared to lead-based ones.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"153 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144304718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscience-enabled pathways to next-generation perovskite photovoltaics. 纳米科学实现下一代钙钛矿光伏发电的途径。
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-17 DOI: 10.1038/s41565-025-01967-4
{"title":"Nanoscience-enabled pathways to next-generation perovskite photovoltaics.","authors":"","doi":"10.1038/s41565-025-01967-4","DOIUrl":"https://doi.org/10.1038/s41565-025-01967-4","url":null,"abstract":"","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"66 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144311618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encoding molecular transport into DNA condensates 将分子运输编码成DNA凝聚体
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-16 DOI: 10.1038/s41565-025-01956-7
Ayala Lampel
{"title":"Encoding molecular transport into DNA condensates","authors":"Ayala Lampel","doi":"10.1038/s41565-025-01956-7","DOIUrl":"https://doi.org/10.1038/s41565-025-01956-7","url":null,"abstract":"In the presence of complementary short oligonucleotide strands within synthetic DNA condensates, a striking mode of molecular transport is observed, revealing a sharp, wave-like diffusion front driven by phase-swelling effects and transitions in the material state of the condensates.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"25 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nanovaccine targeting cancer stem cells and bulk cancer cells for postoperative cancer immunotherapy 一种靶向肿瘤干细胞和大块癌细胞的纳米疫苗用于癌症术后免疫治疗
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-16 DOI: 10.1038/s41565-025-01952-x
Qing You, Gege Wu, Hui Li, Jingyi Liu, Fangfang Cao, Lingwen Ding, Fuming Liang, Bo Zhou, Lilusi Ma, Ling Zhu, Chen Wang, Yanlian Yang, Xiaoyuan Chen
{"title":"A nanovaccine targeting cancer stem cells and bulk cancer cells for postoperative cancer immunotherapy","authors":"Qing You, Gege Wu, Hui Li, Jingyi Liu, Fangfang Cao, Lingwen Ding, Fuming Liang, Bo Zhou, Lilusi Ma, Ling Zhu, Chen Wang, Yanlian Yang, Xiaoyuan Chen","doi":"10.1038/s41565-025-01952-x","DOIUrl":"https://doi.org/10.1038/s41565-025-01952-x","url":null,"abstract":"<p>Residual cancer stem-like cells (CSCs) can cause tumour recurrence within a narrow margin around the initial tumour resection lesion, increasing the risk of post-surgical relapse and incurability. Currently, there are no efficient strategies for tracking and eradicating CSCs. Here we propose a nanovaccine strategy, called NICER, based on a nanovesicle system integrating CSC-specific antigen display and epigenetic nano-regulator encapsulation with a dendritic-cell-targeting aptamer, to simultaneously eradicate CSCs and bulk tumour cells. Specifically, nanovesicles derived from aldehyde-dehydrogenase-overexpressing tumours could serve as integrated antigens carrying both CSC-specific antigen and tumour-associated antigen. Epigenetic nano-regulator targeting YTH <i>N</i><sup>6</sup>-methyladenosine RNA binding protein 1 could restrict dendritic cell lysosomal protease activity to modulate the effective cross-presentation of integrated antigens via major histocompatibility complex class I for immune responses. Overall, NICER represents a broad-spectrum vaccine approach against both CSCs and bulk tumours that can significantly inhibit postoperative cancer recurrence and metastasis, prolonging survival rates.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"592 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoneedles enable spatiotemporal lipidomics of living tissues 纳米针可以实现活组织的时空脂质组学
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-16 DOI: 10.1038/s41565-025-01955-8
Chenlei Gu, Davide Alessandro Martella, Leor Ariel Rose, Nadia Rouatbi, Cong Wang, Alaa Zam, Valeria Caprettini, Magnus Jensen, Shiyue Liu, Cathleen Hagemann, Siham Memdouh, Andrea Serio, Vincenzo Abbate, Khuloud T. Al-Jamal, Maddy Parsons, Mads S. Bergholt, Paul M. Brennan, Assaf Zaritsky, Ciro Chiappini
{"title":"Nanoneedles enable spatiotemporal lipidomics of living tissues","authors":"Chenlei Gu, Davide Alessandro Martella, Leor Ariel Rose, Nadia Rouatbi, Cong Wang, Alaa Zam, Valeria Caprettini, Magnus Jensen, Shiyue Liu, Cathleen Hagemann, Siham Memdouh, Andrea Serio, Vincenzo Abbate, Khuloud T. Al-Jamal, Maddy Parsons, Mads S. Bergholt, Paul M. Brennan, Assaf Zaritsky, Ciro Chiappini","doi":"10.1038/s41565-025-01955-8","DOIUrl":"https://doi.org/10.1038/s41565-025-01955-8","url":null,"abstract":"<p>Spatial biology provides high-content diagnostic information by mapping the molecular composition of tissues. However, traditional spatial biology approaches typically require non-living samples, limiting temporal analysis. Here, to address this limitation, we present a workflow using porous silicon nanoneedles to repeatedly collect biomolecules from live brain tissues and map lipid distribution through desorption electrospray ionization mass spectrometry imaging. This method preserves the integrity of the original tissue while replicating its spatial molecular profile on the nanoneedle substrate, accurately reflecting lipid distribution and tissue morphology. Machine learning analysis of 23 human glioma biopsies demonstrated that nanoneedle sampling enables the precise classification of disease states. Furthermore, a spatiotemporal analysis of mouse gliomas treated with temozolomide revealed time- and treatment-dependent variations in lipid composition. Our approach enables non-destructive spatiotemporal lipidomics, advancing molecular diagnostics for precision medicine.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"4 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144296081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymeric stabilization at the gas–liquid interface for durable solar hydrogen production from plastic waste 气液界面的聚合物稳定,用于从塑料废物中持久的太阳能制氢
IF 38.3 1区 材料科学
Nature nanotechnology Pub Date : 2025-06-11 DOI: 10.1038/s41565-025-01957-6
Wang Hee Lee, Hyunseo Park, Chan Woo Lee, Haeseong Kim, Jae Hwan Jeong, Jeong In Yun, Seong-Uk Bang, Junhyeok Heo, Kyung Hyun Ahn, Gi Doo Cha, Megalamane S. Bootharaju, Byoung-Hoon Lee, Jaeyune Ryu, Minho Kim, Taeghwan Hyeon, Dae-Hyeong Kim
{"title":"Polymeric stabilization at the gas–liquid interface for durable solar hydrogen production from plastic waste","authors":"Wang Hee Lee, Hyunseo Park, Chan Woo Lee, Haeseong Kim, Jae Hwan Jeong, Jeong In Yun, Seong-Uk Bang, Junhyeok Heo, Kyung Hyun Ahn, Gi Doo Cha, Megalamane S. Bootharaju, Byoung-Hoon Lee, Jaeyune Ryu, Minho Kim, Taeghwan Hyeon, Dae-Hyeong Kim","doi":"10.1038/s41565-025-01957-6","DOIUrl":"https://doi.org/10.1038/s41565-025-01957-6","url":null,"abstract":"<p>Heterogeneous photocatalysis offers substantial potential for sustainable energy conversion, yet its industrial application is constrained by limited durability under stringent photochemical conditions. Achieving high photocatalytic activity often requires harsh reaction conditions, compromising catalyst stability and longevity. Here we propose a strategy involving polymeric stabilization of photocatalytic centres uniquely localized at the gas–liquid interface, substantially enhancing both the catalytic activity and stability. Applied to the photocatalytic conversion of plastic waste into solar hydrogen, this approach maintained its catalytic performance over 2 months under harsh conditions. Using 0.3 wt% dynamically stabilized atomic Pt/TiO<sub>2</sub> photocatalysts and concentrated sunlight, we achieved a plastic reforming activity of 271 mmolH<sub>2</sub> h<sup>−1</sup> m<sup>−2</sup>. Scaling to 1 m<sup>2</sup> under natural sunlight yielded a hydrogen production rate of 0.906 l per day from polyethylene terephthalate waste. Economic analysis and extensive-scale simulations suggest this strategy as a promising pathway for high-performance, durable photocatalysis, advancing renewable energy conversion.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"218 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144260563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信