DNA波纹超晶格

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinxin Jing, Nicolas Kroneberg, Andreas Peil, Benjamin Renz, Longjiang Ding, Tobias Heil, Katharina Hipp, Peter A. van Aken, Hao Yan, Na Liu
{"title":"DNA波纹超晶格","authors":"Xinxin Jing, Nicolas Kroneberg, Andreas Peil, Benjamin Renz, Longjiang Ding, Tobias Heil, Katharina Hipp, Peter A. van Aken, Hao Yan, Na Liu","doi":"10.1038/s41565-025-01976-3","DOIUrl":null,"url":null,"abstract":"<p>Moiré superlattices have been extensively designed and implemented in atomic-scale van der Waals systems and submicrometre-scale photonic systems. However, bridging the structural gap between these scales has remained a substantial challenge. Here we demonstrate engineered DNA moiré superlattices with sublattice constants as small as ~2 nm and moiré periodicities spanning tens of nanometres. Using twisted DNA origami nanoseeds, we precisely control the layered registry of 2D microscale single-stranded tile DNA sublattices, achieving seed-defined twist angles with deviations below 2°, along with customizable interlayer spacing, stacking sequences and sublattice symmetries. The modularity of nucleation sites on the seeds enables synthetic control over the nucleation and growth pathways, resulting in a high bilayer fraction of 90%. Notably, we demonstrate a gradient moiré superlattice with a gradual variation in moiré periodicity, highlighting the potential of DNA nanotechnology to construct entirely new artificial structures and materials from the bottom up.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"14 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA moiré superlattices\",\"authors\":\"Xinxin Jing, Nicolas Kroneberg, Andreas Peil, Benjamin Renz, Longjiang Ding, Tobias Heil, Katharina Hipp, Peter A. van Aken, Hao Yan, Na Liu\",\"doi\":\"10.1038/s41565-025-01976-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Moiré superlattices have been extensively designed and implemented in atomic-scale van der Waals systems and submicrometre-scale photonic systems. However, bridging the structural gap between these scales has remained a substantial challenge. Here we demonstrate engineered DNA moiré superlattices with sublattice constants as small as ~2 nm and moiré periodicities spanning tens of nanometres. Using twisted DNA origami nanoseeds, we precisely control the layered registry of 2D microscale single-stranded tile DNA sublattices, achieving seed-defined twist angles with deviations below 2°, along with customizable interlayer spacing, stacking sequences and sublattice symmetries. The modularity of nucleation sites on the seeds enables synthetic control over the nucleation and growth pathways, resulting in a high bilayer fraction of 90%. Notably, we demonstrate a gradient moiré superlattice with a gradual variation in moiré periodicity, highlighting the potential of DNA nanotechnology to construct entirely new artificial structures and materials from the bottom up.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01976-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01976-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在原子尺度的范德华系统和亚微米尺度的光子系统中,已经广泛地设计和实现了莫尔超晶格。然而,弥合这些尺度之间的结构性差距仍然是一项重大挑战。在这里,我们展示了具有亚晶格常数小至~ 2nm和跨越数十纳米的莫尔晶格周期的工程DNA莫尔晶格超晶格。利用扭曲的DNA折纸纳米种子,我们精确地控制了二维微尺度单链瓦片DNA亚晶格的分层注册,实现了种子定义的扭曲角度,偏差低于2°,以及可定制的层间距,堆叠序列和亚晶格对称性。种子上成核位点的模块化使得对成核和生长途径的合成控制成为可能,从而产生高达90%的双层分数。值得注意的是,我们展示了一个梯度莫尔莫尔超晶格,其莫尔莫尔周期性逐渐变化,突出了DNA纳米技术从下向上构建全新人工结构和材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DNA moiré superlattices

DNA moiré superlattices

Moiré superlattices have been extensively designed and implemented in atomic-scale van der Waals systems and submicrometre-scale photonic systems. However, bridging the structural gap between these scales has remained a substantial challenge. Here we demonstrate engineered DNA moiré superlattices with sublattice constants as small as ~2 nm and moiré periodicities spanning tens of nanometres. Using twisted DNA origami nanoseeds, we precisely control the layered registry of 2D microscale single-stranded tile DNA sublattices, achieving seed-defined twist angles with deviations below 2°, along with customizable interlayer spacing, stacking sequences and sublattice symmetries. The modularity of nucleation sites on the seeds enables synthetic control over the nucleation and growth pathways, resulting in a high bilayer fraction of 90%. Notably, we demonstrate a gradient moiré superlattice with a gradual variation in moiré periodicity, highlighting the potential of DNA nanotechnology to construct entirely new artificial structures and materials from the bottom up.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信