Artem O. Denisov, Veronika Reckova, Solenn Cances, Max J. Ruckriegel, Michele Masseroni, Christoph Adam, Chuyao Tong, Jonas D. Gerber, Wei Wister Huang, Kenji Watanabe, Takashi Taniguchi, Thomas Ihn, Klaus Ensslin, Hadrien Duprez
{"title":"Spin–valley protected Kramers pair in bilayer graphene","authors":"Artem O. Denisov, Veronika Reckova, Solenn Cances, Max J. Ruckriegel, Michele Masseroni, Christoph Adam, Chuyao Tong, Jonas D. Gerber, Wei Wister Huang, Kenji Watanabe, Takashi Taniguchi, Thomas Ihn, Klaus Ensslin, Hadrien Duprez","doi":"10.1038/s41565-025-01858-8","DOIUrl":"https://doi.org/10.1038/s41565-025-01858-8","url":null,"abstract":"<p>The intrinsic valley degree of freedom makes bilayer graphene (BLG) a unique platform for semiconductor qubits. The single-carrier quantum dot (QD) ground state exhibits a twofold degeneracy, where the two states that constitute a Kramers pair have opposite spin and valley quantum numbers. Because of the valley-dependent Berry curvature, an out-of-plane magnetic field breaks the time-reversal symmetry of this ground state and a qubit can be encoded in the spin–valley subspace. The Kramers states are protected against known spin- and valley-mixing mechanisms because mixing requires a simultaneous change of the two quantum numbers. Here, we fabricate a tunable QD device in Bernal BLG and measure a spin–valley relaxation time for the Kramers states of 38 s at 30 mK, which is two orders of magnitude longer than the 0.4 s measured for purely spin-blocked states. We also show that the intrinsic Kane–Mele spin–orbit splitting enables a Kramers doublet single-shot readout even at zero magnetic field with a fidelity above 99%. If these long-lived Kramers states also possess long coherence times and can be effectively manipulated, electrostatically defined QDs in BLG may serve as long-lived semiconductor qubits, extending beyond the spin qubit paradigm.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"64 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sikai Ling, Xue Zhang, Yao Dai, Zhuofan Jiang, Xujiao Zhou, Sicong Lu, Xiaoqing Qian, Jianping Liu, Niklas Selfjord, Tugce Munise Satir, Anders Lundin, Julia Liz Touza, Mike Firth, Natalie Van Zuydam, Bilada Bilican, Pinar Akcakaya, Jiaxu Hong, Yujia Cai
{"title":"Customizable virus-like particles deliver CRISPR–Cas9 ribonucleoprotein for effective ocular neovascular and Huntington’s disease gene therapy","authors":"Sikai Ling, Xue Zhang, Yao Dai, Zhuofan Jiang, Xujiao Zhou, Sicong Lu, Xiaoqing Qian, Jianping Liu, Niklas Selfjord, Tugce Munise Satir, Anders Lundin, Julia Liz Touza, Mike Firth, Natalie Van Zuydam, Bilada Bilican, Pinar Akcakaya, Jiaxu Hong, Yujia Cai","doi":"10.1038/s41565-024-01851-7","DOIUrl":"https://doi.org/10.1038/s41565-024-01851-7","url":null,"abstract":"<p>In vivo CRISPR gene editing holds enormous potential for various diseases. Ideally, CRISPR delivery should be cell type-specific and time-restricted for optimal efficacy and safety, but customizable methods are lacking. Here we develop a cell-tropism programmable CRISPR–Cas9 ribonucleoprotein delivery system (RIDE) based on virus-like particles. The efficiency of RIDE was comparable to that of adeno-associated virus and lentiviral vectors and higher than lipid nanoparticles. RIDE could be readily reprogrammed to target dendritic cells, T cells and neurons, and significantly ameliorated the disease symptoms in both ocular neovascular and Huntington’s disease models via cell-specific gene editing. In addition, RIDE could efficiently edit the huntingtin gene in patients’ induced pluripotent stem cell-derived neurons and was tolerated in non-human primates. This study is expected to facilitate the development of in vivo CRISPR therapeutics.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"29 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanopore discrimination of rare earth elements","authors":"Wen Sun, Yunqi Xiao, Kefan Wang, Shanyu Zhang, Lang Yao, Tian Li, Bingxiao Cheng, Panke Zhang, Shuo Huang","doi":"10.1038/s41565-025-01864-w","DOIUrl":"https://doi.org/10.1038/s41565-025-01864-w","url":null,"abstract":"<p>Rare earth elements (REEs), including scandium, yttrium and lanthanides, are strategic resources with unique electric, luminescent and magnetic properties. However, owing to their highly similar physiochemical properties, the identification and separation of all REEs are challenging. Here a <i>Mycobacterium smegmatis</i> porin A nanopore is engineered to contain a nitrilotriacetic acid ligand at its pore constriction. By the further introduction of a secondary ligand <i>N</i><sub>α</sub>,<i>N</i><sub>α</sub>-bis(carboxymethyl)-<span>L</span>-lysine hydrate (ANTA), a dual-ligand sensing strategy was established. A unique property of this strategy is that a variety of REE(III) ions report characteristic blockage features containing three-level transitions, which are critical in discriminating different REE(III)s. The nanopore events of REE(III)s also demonstrate a clear periodicity, suggesting the observation of the lanthanide contraction effect at a single-molecule regime. Assisted by machine learning, all 16 naturally occurring REE(III)s have been identified by the nanopore with high accuracy. This sensing strategy is further applied in analysing bastnaesite samples, suggesting its potential use in geological exploration.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"47 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multivalent effect enables efficient and stable deep-blue perovskite LEDs","authors":"","doi":"10.1038/s41565-025-01855-x","DOIUrl":"https://doi.org/10.1038/s41565-025-01855-x","url":null,"abstract":"A distinctive multivalent-effect immobilization strategy fundamentally stabilizes the structure of deep-blue reduced-dimensional perovskite emitters and enhances excitonic radiative recombination. Using this effect, the efficiency and stability bottlenecks of deep-blue perovskite LEDs are overcome.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"39 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143124852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stijn R. J. Hofstraat, Tom Anbergen, Robby Zwolsman, Jeroen Deckers, Yuri van Elsas, Mirre M. Trines, Iris Versteeg, Daniek Hoorn, Gijs W. B. Ros, Branca M. Bartelet, Merel M. A. Hendrikx, Youssef B. Darwish, Teun Kleuskens, Francisca Borges, Rianne J. F. Maas, Lars M. Verhalle, Willem Tielemans, Pieter Vader, Olivier G. de Jong, Tommaso Tabaglio, Dave Keng Boon Wee, Abraham J. P. Teunissen, Eliane Brechbühl, Henk M. Janssen, P. Michel Fransen, Anne de Dreu, David P. Schrijver, Bram Priem, Yohana C. Toner, Thijs J. Beldman, Mihai G. Netea, Willem J. M. Mulder, Ewelina Kluza, Roy van der Meel
{"title":"Nature-inspired platform nanotechnology for RNA delivery to myeloid cells and their bone marrow progenitors","authors":"Stijn R. J. Hofstraat, Tom Anbergen, Robby Zwolsman, Jeroen Deckers, Yuri van Elsas, Mirre M. Trines, Iris Versteeg, Daniek Hoorn, Gijs W. B. Ros, Branca M. Bartelet, Merel M. A. Hendrikx, Youssef B. Darwish, Teun Kleuskens, Francisca Borges, Rianne J. F. Maas, Lars M. Verhalle, Willem Tielemans, Pieter Vader, Olivier G. de Jong, Tommaso Tabaglio, Dave Keng Boon Wee, Abraham J. P. Teunissen, Eliane Brechbühl, Henk M. Janssen, P. Michel Fransen, Anne de Dreu, David P. Schrijver, Bram Priem, Yohana C. Toner, Thijs J. Beldman, Mihai G. Netea, Willem J. M. Mulder, Ewelina Kluza, Roy van der Meel","doi":"10.1038/s41565-024-01847-3","DOIUrl":"https://doi.org/10.1038/s41565-024-01847-3","url":null,"abstract":"<p>Nucleic acid therapeutics are used for silencing, expressing or editing genes in vivo. However, their systemic stability and targeted delivery to bone marrow resident cells remains a challenge. In this study we present a nanotechnology platform based on natural lipoproteins, designed for delivering small interfering RNA (siRNA), antisense oligonucleotides and messenger RNA to myeloid cells and haematopoietic stem and progenitor cells in the bone marrow. We developed a prototype apolipoprotein nanoparticle (aNP) that stably incorporates siRNA into its core. We then created a comprehensive library of aNP formulations and extensively characterized their physicochemical properties and in vitro performance. From this library, we selected eight representative aNP-siRNA formulations and evaluated their ability to silence lysosomal-associated membrane protein 1 (<i>Lamp1</i>) expression in immune cell subsets in mice after intravenous administration. Using the most effective aNP identified from the screening process, we tested the platform’s potential for therapeutic gene silencing in a syngeneic murine tumour model. We also demonstrated the aNP platform’s suitability for splice-switching with antisense oligonucleotides and for protein production with messenger RNA by myeloid progenitor cells in the bone marrow. Our data indicate that the aNP platform holds translational potential for delivering various types of nucleic acid therapeutics to myeloid cells and their progenitors.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"10 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianchao Dong, Bin Zhao, Huiyu Ji, Ziang Zang, Lingmei Kong, Chunshuang Chu, Dongyuan Han, Jie Wang, Yuhao Fu, Zi-Hui Zhang, Yingguo Yang, Lijun Zhang, Xuyong Yang, Ning Wang
{"title":"Multivalent-effect immobilization of reduced-dimensional perovskites for efficient and spectrally stable deep-blue light-emitting diodes","authors":"Jianchao Dong, Bin Zhao, Huiyu Ji, Ziang Zang, Lingmei Kong, Chunshuang Chu, Dongyuan Han, Jie Wang, Yuhao Fu, Zi-Hui Zhang, Yingguo Yang, Lijun Zhang, Xuyong Yang, Ning Wang","doi":"10.1038/s41565-024-01852-6","DOIUrl":"https://doi.org/10.1038/s41565-024-01852-6","url":null,"abstract":"<p>Despite substantial advances in green and red metal halide perovskite light-emitting diodes (PeLEDs), blue PeLEDs, particularly deep-blue ones (defined as Commission International de l’Eclairage <i>y</i> coordinate (CIE<sub><i>y</i></sub>) less than 0.06) that meet the latest Rec. 2020 colour gamut standard, lag dramatically behind owing to a severe phase segregation-induced electroluminescent spectral shift and low exciton utilization in broadened bandgap perovskite emitters. Here we propose a multivalent immobilization strategy to realize high-efficiency and spectrally stable deep-blue PeLEDs by introducing a polyfluorinated oxygen-containing molecule. Systematic experiments and extensive 5,000 fs ab initio molecular dynamics simulations reveal that a crucial role of the multivalent effect stemming from three kinds of interaction of hydrogen bond (F···H–N), ionic bond (F–Pb) and coordination bond (C=O:Pb) with perovskite is to synergistically stabilize the perovskite phase and enhance exciton radiative recombination. The resultant exciton concentration and exciton recombination rate of the deep-blue perovskite emitter are increased by factors of 1.66 and 1.64, respectively. In this context, our target PeLEDs demonstrate a peak external quantum efficiency of up to 15.36% at a deep-blue emission wavelength of 459 nm and a half-lifetime of 144 min at a constant current density of 0.45 mA cm<sup>−</sup><sup>2</sup>. Moreover, the deep-blue PeLEDs maintain a constant spectrum peak with CIE chromaticity coordinates of (0.136, 0.051) under a steady driving current for 60 min.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"11 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spin-torque-driven gigahertz magnetization dynamics in the non-collinear antiferromagnet Mn3Sn","authors":"Won-Bin Lee, Seongmun Hwang, Hye-Won Ko, Byong-Guk Park, Kyung-Jin Lee, Gyung-Min Choi","doi":"10.1038/s41565-025-01859-7","DOIUrl":"https://doi.org/10.1038/s41565-025-01859-7","url":null,"abstract":"<p>Non-collinear antiferromagnets, such as Mn<sub>3</sub>Sn, stand out for their topological properties and potential in antiferromagnetic spintronics. This emerging field aims at harnessing ultrafast magnetization dynamics of antiferromagnets through spin torques. Here we report the time-resolved dynamics of Mn<sub>3</sub>Sn on a picosecond timescale, driven by an optically induced spin current pulse. Our results reveal that the magnetization of Mn<sub>3</sub>Sn tilts immediately after the spin current pulse and subsequently undergoes 70 GHz precession. This immediate tilting underscores the predominant role of damping-like torque stemming from spin current absorption by Mn<sub>3</sub>Sn. We also determine the spin coherence length of Mn<sub>3</sub>Sn to be approximately 15 nm. This value substantially exceeds that of ferromagnets, highlighting a distinct spin-dephasing process in non-collinear antiferromagnets. Our results hold promise for ultrafast applications of non-collinear antiferromagnets and enrich our understanding of their spin-transfer physics.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"123 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Liang, Dongyang Yang, Jingda Wu, Yunhuan Xiao, Kenji Watanabe, Takashi Taniguchi, Jerry I. Dadap, Ziliang Ye
{"title":"Resolving polarization switching pathways of sliding ferroelectricity in trilayer 3R-MoS2","authors":"Jing Liang, Dongyang Yang, Jingda Wu, Yunhuan Xiao, Kenji Watanabe, Takashi Taniguchi, Jerry I. Dadap, Ziliang Ye","doi":"10.1038/s41565-025-01862-y","DOIUrl":"https://doi.org/10.1038/s41565-025-01862-y","url":null,"abstract":"<p>Sliding ferroelectricity, an emerging type of hysteretic behaviour with strong potential for memory-related applications, involves dynamically switching the polarization associated with the stacking arrangement in two-dimensional van der Waals materials. Because different stacking configurations can share a degenerate net polarization, it has remained a challenge to resolve the intermediate stacking configuration and the polarization switching pathway in multi-interface devices. In this work, we present an optical approach to resolve the polarization degeneracy in a trilayer 3R-MoS<sub>2</sub> over different switching cycles. By performing reflection contrast spectroscopy in dual-gated devices, we identify distinct responses of inter- and intralayer excitons in all four possible stacking configurations (ABC, ABA, BAB and CBA). Diffraction-limited spatial resolution makes it possible to image the switching of the stacking configurations. We find that the switching pathway is influenced not only by the competition among pinning centres—which localize domain walls at different interfaces—but also by a free-carrier screening effect linked to chemical doping. These findings highlight the importance of managing domain walls, pinning centres and doping levels in sliding ferroelectric devices, offering insights for further development in sensing and computing applications.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"50 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ai-Min Li, Peter Y. Zavalij, Fred Omenya, Xiaolin Li, Chunsheng Wang
{"title":"Salt-in-presalt electrolyte solutions for high-potential non-aqueous sodium metal batteries","authors":"Ai-Min Li, Peter Y. Zavalij, Fred Omenya, Xiaolin Li, Chunsheng Wang","doi":"10.1038/s41565-024-01848-2","DOIUrl":"https://doi.org/10.1038/s41565-024-01848-2","url":null,"abstract":"<p>Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy. In SIPS, sodium bis(fluorosulfonyl)imide (NaFSI) salt is dissolved in the liquid precursor of the sodium bis(trifluoromethylsulfonyl)imide (NaTFSI) salt, that is, <i>N</i>,<i>N</i>-dimethyltrifluoromethane-sulfonamide, called PreTFSI. The prepared 0.5 M NaFSI in PreTFSI (SIPS5) electrolyte solution shows an electrochemical stability up to 6.7 V versus Na|Na<sup>+</sup> and enables a Na stripping/plating average Coulombic efficiency of 99.7% at 2.0 mA cm<sup>−</sup><sup>2</sup> and 4.0 mAh cm<sup>−</sup><sup>2</sup> in Na||Al cell configuration. By testing SIPS5 in Na metal and ‘anode-less’ coin and pouch cell configurations using NaNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> or sulfurized polyacrylonitrile as positive electrode active materials, we demonstrate the ability of the SIPS strategy to deliver improved specific discharge capacity and capacity retentions at high cell potentials and moderate applied specific currents for cell cycle life up to 1,000 cycles.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"14 1","pages":""},"PeriodicalIF":38.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}