Midori Johnston, Schan Dissanayake-Perera, James J Collins, Molly M Stevens, Can Dincer
{"title":"Convergence of nanotechnology and CRISPR-based diagnostics.","authors":"Midori Johnston, Schan Dissanayake-Perera, James J Collins, Molly M Stevens, Can Dincer","doi":"10.1038/s41565-025-02018-8","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to its broad application in genome engineering and therapeutics, clustered regularly interspaced short palindromic repeats (CRISPR) technology provides field-deployable methods for the highly sensitive and selective detection of nucleic acids. From a diagnostic perspective, CRISPR-based assays hold clear clinical potential for identifying a range of both infectious and non-communicable diseases. In this Perspective we evaluate recent nanotechnologies and nanomaterials that have been engineered to interface with CRISPR systems on a nanoscale level to realize the full potential of this versatile diagnostic tool. We assess biomolecules such as enzymes and oligonucleotides, some of the more commonly used synthetic nanoparticles and detection platforms that integrate nanotechnologies in new and innovative ways. We discuss current trends and look ahead to future challenges and opportunities, including non-nucleic acid target detection, pre-amplification-free detection of nucleic acids, the development of wearable devices and integration with artificial intelligence workflows.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":" ","pages":""},"PeriodicalIF":34.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-02018-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In addition to its broad application in genome engineering and therapeutics, clustered regularly interspaced short palindromic repeats (CRISPR) technology provides field-deployable methods for the highly sensitive and selective detection of nucleic acids. From a diagnostic perspective, CRISPR-based assays hold clear clinical potential for identifying a range of both infectious and non-communicable diseases. In this Perspective we evaluate recent nanotechnologies and nanomaterials that have been engineered to interface with CRISPR systems on a nanoscale level to realize the full potential of this versatile diagnostic tool. We assess biomolecules such as enzymes and oligonucleotides, some of the more commonly used synthetic nanoparticles and detection platforms that integrate nanotechnologies in new and innovative ways. We discuss current trends and look ahead to future challenges and opportunities, including non-nucleic acid target detection, pre-amplification-free detection of nucleic acids, the development of wearable devices and integration with artificial intelligence workflows.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.