NanoImpact最新文献

筛选
英文 中文
Toxic effects of environmental-relevant exposure to polyethylene terephthalate (PET) micro and nanoparticles in zebrafish early development 与环境相关的聚对苯二甲酸乙二酯(PET)微粒和纳米粒子暴露对斑马鱼早期发育的毒性影响
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2024-01-01 DOI: 10.1016/j.impact.2024.100497
Lilian de Souza Teodoro , Camilo Alexandre Jablonski , Kauê Pelegrini , Talita Carneiro Brandão Pereira , Thuany Garcia Maraschin , Alan Carvalho de Sousa Araujo , Jose Maria Monserrat , Nara Regina de Souza Basso , Luiza Wilges Kist , Maurício Reis Bogo
{"title":"Toxic effects of environmental-relevant exposure to polyethylene terephthalate (PET) micro and nanoparticles in zebrafish early development","authors":"Lilian de Souza Teodoro ,&nbsp;Camilo Alexandre Jablonski ,&nbsp;Kauê Pelegrini ,&nbsp;Talita Carneiro Brandão Pereira ,&nbsp;Thuany Garcia Maraschin ,&nbsp;Alan Carvalho de Sousa Araujo ,&nbsp;Jose Maria Monserrat ,&nbsp;Nara Regina de Souza Basso ,&nbsp;Luiza Wilges Kist ,&nbsp;Maurício Reis Bogo","doi":"10.1016/j.impact.2024.100497","DOIUrl":"10.1016/j.impact.2024.100497","url":null,"abstract":"<div><p>Polyethylene terephthalate (PET) is a commonly used thermoplastic in industry due to its excellent malleability and thermal stability, making it extensively employed in packaging manufacturing. Inadequate disposal of PET packaging in the environment and natural physical-chemical processes leads to the formation of smaller particles known as PET micro and nanoplastics (MNPs). The reduced dimensions enhance particle bioavailability and, subsequently, their reactivity. This study involved chemical degradation of PET using trifluoroacetic acid to assess the impact of exposure to varying concentrations of PET MNPs (0.5, 1, 5, 10, and 20 mg/L) on morphological, functional, behavioral, and biochemical parameters during the early developmental stages of zebrafish (<em>Danio rerio</em>). Characterization of the degraded PET revealed the generated microplastics (MPs) ranged in size from 1305 to 2032 μm, and that the generated nanoplastics (NPs) ranged from 68.06 to 955 nm. These particles were then used for animal exposure. After a six-day exposure period, our findings indicate that PET MNPs can diminish spontaneous tail coiling (STC), elevate the heart rate, accumulate on the chorion surface, and reduce interocular distance. These results suggest that PET exposure induces primary toxic effects on zebrafish embryo-larval stage of development.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"33 ","pages":"Article 100497"},"PeriodicalIF":4.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139679285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale sulfur alters the bacterial and eukaryotic communities of the tomato rhizosphere and their interactions with a fungal pathogen 纳米级硫改变番茄根圈的细菌和真核生物群落及其与真菌病原体的相互作用
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2024-01-01 DOI: 10.1016/j.impact.2024.100495
Blaire Steven , M. Amine Hassani , Jacquelyn C. LaReau , Yi Wang , Jason C. White
{"title":"Nanoscale sulfur alters the bacterial and eukaryotic communities of the tomato rhizosphere and their interactions with a fungal pathogen","authors":"Blaire Steven ,&nbsp;M. Amine Hassani ,&nbsp;Jacquelyn C. LaReau ,&nbsp;Yi Wang ,&nbsp;Jason C. White","doi":"10.1016/j.impact.2024.100495","DOIUrl":"10.1016/j.impact.2024.100495","url":null,"abstract":"<div><p><span>Nanoformulations of sulfur have demonstrated the potential to enhance plant growth and reduce disease incidence when plants are confronted with pathogens<span><span>. However, the impact of nanoscale sulfur on microbial communities in close contact with the plant root, known as the rhizosphere, remain poorly characterized. In this study, we investigate the impact of three formulations of sulfur; bulk sulfur, uncoated (pristine) sulfur </span>nanoparticles<span>, and stearic acid coated sulfur nanoparticles, on the rhizosphere of tomato plants. Tomato plants were additionally challenged by the pathogenic fungus </span></span></span><span><em>Fusarium oxysporum</em><em> f.</em></span> sp. <em>Lycopersici</em><span><span>. Employing bacterial 16S rRNA gene sequencing, along with recently in-house designed </span>peptide nucleic acid<span> clamps to facilitate the recovery of microeukaryote sequences, we performed a comprehensive survey of rhizosphere microbial populations. We found the largest influence on the composition of the rhizosphere microbiome<span> was the presence of the fungal pathogen. However, sulfur amendments also drove state changes in the rhizosphere populations; for example, enriching the relative abundance of the plant-beneficial sulfur-oxidizing bacterium </span></span></span><span><em>Thiobacillus</em></span>. Notably, when investigating the response of the rhizosphere community to the different sulfur amendments, there was a strong interaction between the fungal pathogen and sulfur treatments. This resulted in different bacterial and eukaryotic taxa being enriched in association with the different forms of sulfur, which was dependent on the presence of the pathogen. These data point to nano formulations of sulfur exerting unique shifts in the rhizosphere community compared to bulk sulfur, particularly in association with a plant pathogen, and have implications for the sustainable use of nanoscale strategies in sustainable agriculture.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"33 ","pages":"Article 100495"},"PeriodicalIF":4.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stool titanium dioxide is positively associated with stool alpha-1 antitrypsin and calprotectin in young healthy adults 健康年轻人粪便中的二氧化钛与粪便中的α-1 抗胰蛋白酶和钙粘蛋白呈正相关关系
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2024-01-01 DOI: 10.1016/j.impact.2024.100498
Christianto Putra, Dhimiter Bello, Shannon L. Kelleher, Katherine L. Tucker, Kelsey M. Mangano
{"title":"Stool titanium dioxide is positively associated with stool alpha-1 antitrypsin and calprotectin in young healthy adults","authors":"Christianto Putra,&nbsp;Dhimiter Bello,&nbsp;Shannon L. Kelleher,&nbsp;Katherine L. Tucker,&nbsp;Kelsey M. Mangano","doi":"10.1016/j.impact.2024.100498","DOIUrl":"10.1016/j.impact.2024.100498","url":null,"abstract":"<div><p>Titanium dioxide (TiO2/E171) is used widely in foods, primarily as a food additive. Animal models have shown that chronic TiO<sub>2</sub> exposure may disturb homeostasis of the gastrointestinal tract by increasing gut permeability, inducing gut inflammation, and increasing the likelihood of microbial infection. Adults have a wide range of ingested TiO<sub>2</sub>,which span two to three orders of magnitude, with a small portion of individuals consuming near gram quantities of TiO2/day. However, research on the health effects of chronic ingestion of TiO2/E171 in humans is limited. We hypothesized that regularly ingested TiO2/E171 is associated with increased gut inflammation and gut permeability in healthy adults. We tested this hypothesis in a cross-sectional design by measuring clinically established stool markers of gut inflammation (calprotectin, lactoferrin) and gut permeability (alpha-1 antitrypsin; A1AT) in 35 healthy adults, and comparing these markers between relatively high and low TiO2 exposure groups. Participants were stratified by TiO2 stool content (high dry stool TiO2 content: 0.95–9.92 μg/mg, <em>n</em> = 20; low content: 0.01–0.04 μg/mg; <em>n</em> = 15). Differences in gut health markers were tested between high and low exposure groups by independent samples <em>t</em>-test or Mann-Whitney <em>U</em> test. Multivariable linear regression was used to assess the association between TiO2 in dry stool and measured stool alpha-1 antitrypsin (A1AT). Participants in the high stool TiO2 group had greater stool A1AT (42.7 ± 21.6 mg/dL; median: 38.3; range: 1.0–49.2 mg/dL), compared to the low TiO2 group (22.8 ± 13.6 mg/dL; median: 20.9; range: 8.7–93.0 mg/dL), <em>P</em> = 0.003. There was also greater stool calprotectin in the high TiO<sub>2</sub> group (51.4 ± 48.6 μg/g; median 29.2 μg/g; range: 15.3–199.0 μg/g) than in the low group (47.5 ± 63.3 μg/g; median 18.8 μg/g; range: 1.6–198.1 μg/g), <em>P</em> = 0.04. No clear difference was observed for lactoferrin (high TiO2 group 1.6 ± 2.1 μg/g; median: 0.68 μg/g; range: 0.01–7.7 μg/g, low TiO2 group: 1.3 ± 2.6 μg/g; median: 0.2; range: 0.01–7.6 μg/g) (<em>P</em> = 0.15). A1AT concentration was positively associated with stool TiO2, after adjusting for confounders (β ± SE: 19.6 ± 7.2; <em>P</em> = 0.01) R<sup>2</sup> = 0.38). Community dwelling, healthy adults with the highest TiO2 stool content had higher stool A1AT and calprotectin, compared to those with the lowest TiO<sub>2</sub> stool content. Ongoing research is needed to validate these observations in larger groups, and to determine the long-term effects of ingested TiO<sub>2</sub> on human gut health, using these and additional health endpoints.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"33 ","pages":"Article 100498"},"PeriodicalIF":4.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139876317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-corona-mediated transformation of nano-sized Y2O3 in simulated freshwater: A short-term study 生态电晕介导的纳米级 Y2O3 在模拟淡水中的转化:短期研究
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2024-01-01 DOI: 10.1016/j.impact.2023.100490
Alexander Khort , Tingru Chang , Jing Hua , Eva Blomberg , Tommy Cedervall , Inger Odnevall
{"title":"Eco-corona-mediated transformation of nano-sized Y2O3 in simulated freshwater: A short-term study","authors":"Alexander Khort ,&nbsp;Tingru Chang ,&nbsp;Jing Hua ,&nbsp;Eva Blomberg ,&nbsp;Tommy Cedervall ,&nbsp;Inger Odnevall","doi":"10.1016/j.impact.2023.100490","DOIUrl":"10.1016/j.impact.2023.100490","url":null,"abstract":"<div><p>The use of metal and metal oxide nanomaterials (NMs) is experiencing a significant surge in popularity due to their distinctive structures and properties, making them highly attractive for a wide range of applications. This increases the risks of their potential negative impact on organisms if dispersed into the environment. Information about their behavior and transformation upon environmental interactions in aquatic settings is limited. In this study, the influence of naturally excreted biomolecules from the zooplankton <em>Daphnia magna</em> on nanosized Y<sub>2</sub>O<sub>3</sub> of different concentrations was systematically examined in synthetic freshwater in terms of adsorption and eco-corona formation, colloidal stability, transformation, dissolution, and ecotoxicity towards <em>D. magna</em>. The formation of an eco-corona on the surface of the Y<sub>2</sub>O<sub>3</sub> NMs leads to improved colloidal stability and a reduced extent of dissolution. Exposure to the Y<sub>2</sub>O<sub>3</sub> NMs lowered the survival probability of <em>D. magna</em> considerably. The ecotoxic potency was slightly reduced by the formation of the eco-corona, though shown to be particle concentration-specific. Overall, the results highlight the importance of systematic mechanistic and fundamental studies of factors that can affect the environmental fate and ecotoxic potency of NMs.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"33 ","pages":"Article 100490"},"PeriodicalIF":4.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452074823000411/pdfft?md5=caf924e5c45c1ca793fea21d13b8bcdf&pid=1-s2.0-S2452074823000411-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life-cycle risk assessment of graphene-enabled textiles in fire protection gear 消防装备中石墨烯纺织品的生命周期风险评估。
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2023-11-07 DOI: 10.1016/j.impact.2023.100488
James D. Ede , Ana S. Diges , Yueyang Zhang , Jo Anne Shatkin
{"title":"Life-cycle risk assessment of graphene-enabled textiles in fire protection gear","authors":"James D. Ede ,&nbsp;Ana S. Diges ,&nbsp;Yueyang Zhang ,&nbsp;Jo Anne Shatkin","doi":"10.1016/j.impact.2023.100488","DOIUrl":"10.1016/j.impact.2023.100488","url":null,"abstract":"<div><p>A nanomaterial life-cycle risk assessment (Nano LCRA) of a graphene-enabled textile used in the construction of heat and fire-resistant personal protective equipment (PPE) was conducted to develop, analyze, and prioritize potential occupational, health and environmental risks. The analysis identifies potential receptors and exposure pathways at each product life-cycle stage and makes a qualitative evaluation of the potential significance of each scenario. A literature review, quality evaluation, and database were developed as part of the LCRA to identify potential hazards associated with graphene-based materials (GBMs) throughout the product life-cycle. Generally, risks identified from graphene-enabled textiles were low. Of the developed exposure scenarios, occupational inhalation exposures during raw material and product manufacturing ranked highest. The analysis identifies the key potential human and environmental hazards and exposures of the products across the product life-cycle of graphene enabled textiles. Priority research gaps to reduce uncertainty include evaluating long-term, low dose graphene exposures typical of the workplace, as well as the potential release and hazard characterization of graphene-acrylic nanocomposites.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"33 ","pages":"Article 100488"},"PeriodicalIF":4.9,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71522114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs 微塑料和纳米塑料及其潜在的毒理学结果:科学状况、知识差距和研究需求。
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2023-10-01 DOI: 10.1016/j.impact.2023.100481
Zhenning Yang , Glen M. DeLoid , Helmut Zarbl , Joshua Baw , Philip Demokritou
{"title":"Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs","authors":"Zhenning Yang ,&nbsp;Glen M. DeLoid ,&nbsp;Helmut Zarbl ,&nbsp;Joshua Baw ,&nbsp;Philip Demokritou","doi":"10.1016/j.impact.2023.100481","DOIUrl":"10.1016/j.impact.2023.100481","url":null,"abstract":"<div><p>Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm – 5 mm) and nanometer (1 – 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"32 ","pages":"Article 100481"},"PeriodicalIF":4.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10338557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular polymeric substances altered the physicochemical properties of molybdenum disulfide nanomaterials to mitigate its toxicity to Chlorella vulgaris 胞外聚合物改变了二硫化钼纳米材料的物理化学性质,以减轻其对小球藻的毒性。
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2023-10-01 DOI: 10.1016/j.impact.2023.100485
Manman Cao , Donghong Yang , Fei Wang , Beihai Zhou , Huilun Chen , Rongfang Yuan , Ke Sun
{"title":"Extracellular polymeric substances altered the physicochemical properties of molybdenum disulfide nanomaterials to mitigate its toxicity to Chlorella vulgaris","authors":"Manman Cao ,&nbsp;Donghong Yang ,&nbsp;Fei Wang ,&nbsp;Beihai Zhou ,&nbsp;Huilun Chen ,&nbsp;Rongfang Yuan ,&nbsp;Ke Sun","doi":"10.1016/j.impact.2023.100485","DOIUrl":"10.1016/j.impact.2023.100485","url":null,"abstract":"<div><p>Although the toxic effects of two-dimensional nanomaterials (2D-NMs) have been widely reported, the influence of extracellular polymeric substances (EPS) on the environmental fate and risk of 2D-NMs in aquatic environments is largely unknown, and the processes and mechanisms involved remain to be revealed. Herein, we investigated the impact of EPS secreted by microalgae (<em>Chlorella vulgaris</em> (<em>C. vulgaris</em>)) on the environmental transformation and risk of molybdenum disulfide (MoS<sub>2</sub>). We found that the attachment of EPS increased the thickness of MoS<sub>2</sub> (from 2 nm to 5 nm), changed it from a monolayer sheet to a fuzzy multilayer structure, and promoted the formation of defects on MoS<sub>2</sub>. The blue-shift of the peak associated with the plasmon resonances in the 1 T phase and the generation of electron-hole pairs suggested that EPS altered the surface electronic structure of MoS<sub>2</sub>. EPS interacted mainly with the S atoms on the 1 T phase, and the attachment of EPS promoted the oxidation of MoS<sub>2</sub>. The reduction in hydrodynamic diameter (<em>D</em><sub>h</sub>) and the decrease in zeta potential indicated that EPS inhibited the agglomeration behavior of MoS<sub>2</sub> and enhanced its dispersion and stability in aqueous media. Notably, EPS reduced the generation of free radicals (superoxide anion (•O<sub>2</sub><sup>−</sup>), singlet oxygen (<sup>1</sup>O<sub>2</sub>), and hydroxyl radicals (•OH<sup>−</sup>)). Furthermore, EPS mitigated the toxicity of MoS<sub>2</sub> to <em>C. vulgaris</em>, such as attenuated reduction in biomass and chlorophyll content. Compared to pristine MoS<sub>2</sub>, MoS<sub>2</sub> + BG11 + EPS exhibited weaker oxidative stress, membrane damage and lipid peroxidation. The adsorption of EPS on MoS<sub>2</sub> surface reduced the attachment sites of MoS<sub>2</sub>, making MoS<sub>2</sub> less likely to be enriched on the cell surface. The findings have significant contribution for understanding the interactions between EPS and MoS<sub>2</sub> in aquatic ecosystems, providing scientific guidance for risk assessment of 2D-NMs.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"32 ","pages":"Article 100485"},"PeriodicalIF":4.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41134782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trophic transfer of nanomaterials and their effects on high-trophic-level predators 纳米材料的营养转移及其对高营养性捕食者的影响。
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2023-10-01 DOI: 10.1016/j.impact.2023.100489
Fei Dang , Yuan Yuan , Yingnan Huang , Yujun Wang , Baoshan Xing
{"title":"Trophic transfer of nanomaterials and their effects on high-trophic-level predators","authors":"Fei Dang ,&nbsp;Yuan Yuan ,&nbsp;Yingnan Huang ,&nbsp;Yujun Wang ,&nbsp;Baoshan Xing","doi":"10.1016/j.impact.2023.100489","DOIUrl":"10.1016/j.impact.2023.100489","url":null,"abstract":"<div><p><span><span>Nanotechnology offers great opportunities for numerous sectors in society. One important challenge in sustainable nanotechnology is the potential of trophic transfer of nanomaterials<span><span> (NMs), which may lead to unintentional impacts on environmental and human health. Here, we highlight the key advances that have been made in recent 15 years with respect to trophic transfer of heterogeneous NMs, including metal-based NMs, carbon-based NMs and nanoplastics, across various aquatic and terrestrial food chains. Particle number-based trophic transfer factors (TTFs), rather than the variable mass-based TTFs, capture the particle-specific transfer, for which NMs exhibit dynamic and complex </span>biotransformation (e.g., dissolution, </span></span>sulfidation, reduction, and corona formation). Trophic transfer of NMs has toxicological significance to predators at molecular (e.g., increased </span>oxidative stress and modified metabolites), physiological (e.g., feeding inhibition) and population (e.g., reproduction inhibition) levels. However, linking NM exposure and toxicity remains a challenge, partly due to the dynamic biotransformation along the food chain. Although NMs have been used to increase crop yield in agriculture, they can exert detrimental impacts on crop yield and modify crop quality, depending on NMs type, exposure dose, and crop species, with unknown consequences to human health via crop consumption. Given this information, we describe the challenges and opportunities in understanding the significance of NMs trophic transfer to develop more sustainable, effective and safer nanotechnology.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"32 ","pages":"Article 100489"},"PeriodicalIF":4.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative evaluation of released nanomaterials from carbon nanotube epoxy nanocomposites during environmental exposure and mechanical treatment 碳纳米管-环氧树脂纳米复合材料在环境暴露和机械处理过程中释放的纳米材料的定量评估。
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2023-10-01 DOI: 10.1016/j.impact.2023.100486
Yue Zhao , David G. Goodwin Jr. , Lipiin Sung , Girish Ramakrishnan , Qiyuan Wu , Jiajie Cen , Elijah J. Petersen , Alexander Orlov
{"title":"Quantitative evaluation of released nanomaterials from carbon nanotube epoxy nanocomposites during environmental exposure and mechanical treatment","authors":"Yue Zhao ,&nbsp;David G. Goodwin Jr. ,&nbsp;Lipiin Sung ,&nbsp;Girish Ramakrishnan ,&nbsp;Qiyuan Wu ,&nbsp;Jiajie Cen ,&nbsp;Elijah J. Petersen ,&nbsp;Alexander Orlov","doi":"10.1016/j.impact.2023.100486","DOIUrl":"10.1016/j.impact.2023.100486","url":null,"abstract":"<div><p>Carbon nanotubes (CNTs) are promising nanomaterials exhibiting high thermal and electrical conductivities, significant stiffness, and high tensile strength. As a result, CNTs have been utilized as additives to enhance properties of various polymeric materials in a broad range of fields. In this study, we investigated the release of CNTs from CNT epoxy nanocomposites exposed to environmental weathering and mechanical stresses. The presence and amount of CNTs released from degraded polymer nanocomposites is important because CNTs can impact physiological systems in humans and environmental organisms. The weathering experiments in this study included nanocomposite exposure to both UV and a water spray, to simulate sunlight and rain exposure, whereas mechanical stresses were induced by shaking and ultrasonication. CNT release from epoxy nanocomposites was quantified by a <sup>14</sup>C-labeling method that enabled measurement of the CNT release rates after different weathering and mechanical treatments. In this study, a sample oxidizer was used prior to liquid scintillation counting, because it was shown to reduce interferences from the presence of polymeric materials and achieve a high recovery (95%). Polymer nanocomposite degradation was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and light microscopy. A continuous release of <sup>14</sup>C-labeled nanomaterials was observed after each UV and simulated rain exposure period, with 0.23% (mass/mass) of the total embedded mass of CNTs being released from the CNT nanocomposite during the full weathering process, suggesting that the water spray induced sufficient mechanical stress to eliminate the protective effect of the surface agglomerated CNT network. Importantly, additional mechanical stresses imposed on the weathered nanocomposites by shaking and ultrasonication resulted in further release of approximately 0.27% (mass /mass).</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"32 ","pages":"Article 100486"},"PeriodicalIF":4.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41117804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A roadmap to strengthen standardisation efforts in risk governance of nanotechnology 加强纳米技术风险治理标准化工作的路线图。
IF 4.9 3区 环境科学与生态学
NanoImpact Pub Date : 2023-10-01 DOI: 10.1016/j.impact.2023.100483
Kirsten Rasmussen , Eric A.J. Bleeker , James Baker , Jacques Bouillard , Wouter Fransman , Thomas A.J. Kuhlbusch , Susanne Resch , Jacques-Aurélien Sergent , Lya G. Soeteman-Hernandez , Blanca Suarez-Merino , Andrea Porcari
{"title":"A roadmap to strengthen standardisation efforts in risk governance of nanotechnology","authors":"Kirsten Rasmussen ,&nbsp;Eric A.J. Bleeker ,&nbsp;James Baker ,&nbsp;Jacques Bouillard ,&nbsp;Wouter Fransman ,&nbsp;Thomas A.J. Kuhlbusch ,&nbsp;Susanne Resch ,&nbsp;Jacques-Aurélien Sergent ,&nbsp;Lya G. Soeteman-Hernandez ,&nbsp;Blanca Suarez-Merino ,&nbsp;Andrea Porcari","doi":"10.1016/j.impact.2023.100483","DOIUrl":"10.1016/j.impact.2023.100483","url":null,"abstract":"<div><p>A roadmap was developed to strengthen standardisation activities for risk governance of nanotechnology. Its baseline is the available standardised and harmonised methods for nanotechnology developed by the International Organization for Standardization (ISO), the European Committee for Standardization (CEN), and the Organisation for Economic Co-operation and Development (OECD). In order to identify improvements and needs for new themes in standardisation work, an analysis of the state-of-the-art concepts and interpretations of risk governance of nanotechnology was performed. Eleven overall areas of action were identified, each including a subset of specific topics. Themes addressed include physical chemical characterisation, assessment of hazard, exposure, risk and socio-economic factors, as well as education &amp; training and social dialogue. This has been visualised in a standardisation roadmap spanning a timeframe of ten years and including key outcomes and highlights of the analysis. Furthermore, the roadmap indicates potential areas of action for harmonisation and standardisation (H&amp;S) for nanomaterials and nanotechnology. It also includes an evaluation of the current level (limited, moderate, intense) of ongoing H&amp;S activities and indicates the time horizon for the different areas of action. As the identified areas differ in their state of development, the number and type of actions varied widely amongst the different actions towards achieving standardisation. Thus, priority areas were also identified. The overall objective of these actions is to strengthen risk governance towards a safe use of nanomaterials and nano-related products. Though not explicitly addressed, risk-based legislation and policies are supported via the proposed H&amp;S actions.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"32 ","pages":"Article 100483"},"PeriodicalIF":4.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41125033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信