{"title":"纳米塑料是否会影响 Hordeum vulgare L. 对铅的吸收?","authors":"Nataliia Ryzhenko , Lionel Dutruch , Briscine Tabo , Guillaume Pecheul , Maxime Pattier , Imane Khatib , Mathieu Pédrot , Julien Gigault , Francisco Cabello-Hurtado , Abdelhak El Amrani , Mélanie Davranche","doi":"10.1016/j.impact.2024.100526","DOIUrl":null,"url":null,"abstract":"<div><p>Most studies on nanoplastics (NPs) focus on aquatic environments, overlooking their combined bioaccumulation with pollutants in terrestrial ecosystems. This study addresses a part of this gap by investigating how polystyrene nanoplastics (PS-NPs) affect the bioaccumulation and translocation of lead (Pb) in <em>Hordeum vulgare</em> L. plants. Using the RHIZOtest device for precise soil contamination control, we quantified PS-NPs (50 nm) in plant shoots via pyrolysis-gas chromatography/mass spectrometry (Py-GCMS) after plant KOH digestion. Our findings revealed that PS-NPs reduce Pb bioaccumulation and make adsorbed Pb onto PS-NPs less bioavailable to plants. For the highest Pb concentration, the Pb uptake index (PUI) followed the trend: Free Pb > NPs + Pb > Pb primary adsorbed by NPs, showing reduced Pb translocation to shoots in the presence of PS-NPs. Moreover, the presence of Pb decreased the bioavailability of PS-NPs probably in response to PS-NPs aggregation or modified charge. The PS-NPs concentrations in shoots range from 275.2 to 400 μg g<sup>−1</sup>, representing 3.9 to 5.75% of the total PS-NPs. This study highlights the intricate interactions between nanoplastics and metals in soil-plant systems and emphasizes the need for further research on their combined effects and potential risks to food safety.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"35 ","pages":"Article 100526"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do nanoplastics impact Pb up-taking by Hordeum vulgare L.?\",\"authors\":\"Nataliia Ryzhenko , Lionel Dutruch , Briscine Tabo , Guillaume Pecheul , Maxime Pattier , Imane Khatib , Mathieu Pédrot , Julien Gigault , Francisco Cabello-Hurtado , Abdelhak El Amrani , Mélanie Davranche\",\"doi\":\"10.1016/j.impact.2024.100526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most studies on nanoplastics (NPs) focus on aquatic environments, overlooking their combined bioaccumulation with pollutants in terrestrial ecosystems. This study addresses a part of this gap by investigating how polystyrene nanoplastics (PS-NPs) affect the bioaccumulation and translocation of lead (Pb) in <em>Hordeum vulgare</em> L. plants. Using the RHIZOtest device for precise soil contamination control, we quantified PS-NPs (50 nm) in plant shoots via pyrolysis-gas chromatography/mass spectrometry (Py-GCMS) after plant KOH digestion. Our findings revealed that PS-NPs reduce Pb bioaccumulation and make adsorbed Pb onto PS-NPs less bioavailable to plants. For the highest Pb concentration, the Pb uptake index (PUI) followed the trend: Free Pb > NPs + Pb > Pb primary adsorbed by NPs, showing reduced Pb translocation to shoots in the presence of PS-NPs. Moreover, the presence of Pb decreased the bioavailability of PS-NPs probably in response to PS-NPs aggregation or modified charge. The PS-NPs concentrations in shoots range from 275.2 to 400 μg g<sup>−1</sup>, representing 3.9 to 5.75% of the total PS-NPs. This study highlights the intricate interactions between nanoplastics and metals in soil-plant systems and emphasizes the need for further research on their combined effects and potential risks to food safety.</p></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"35 \",\"pages\":\"Article 100526\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074824000363\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000363","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Do nanoplastics impact Pb up-taking by Hordeum vulgare L.?
Most studies on nanoplastics (NPs) focus on aquatic environments, overlooking their combined bioaccumulation with pollutants in terrestrial ecosystems. This study addresses a part of this gap by investigating how polystyrene nanoplastics (PS-NPs) affect the bioaccumulation and translocation of lead (Pb) in Hordeum vulgare L. plants. Using the RHIZOtest device for precise soil contamination control, we quantified PS-NPs (50 nm) in plant shoots via pyrolysis-gas chromatography/mass spectrometry (Py-GCMS) after plant KOH digestion. Our findings revealed that PS-NPs reduce Pb bioaccumulation and make adsorbed Pb onto PS-NPs less bioavailable to plants. For the highest Pb concentration, the Pb uptake index (PUI) followed the trend: Free Pb > NPs + Pb > Pb primary adsorbed by NPs, showing reduced Pb translocation to shoots in the presence of PS-NPs. Moreover, the presence of Pb decreased the bioavailability of PS-NPs probably in response to PS-NPs aggregation or modified charge. The PS-NPs concentrations in shoots range from 275.2 to 400 μg g−1, representing 3.9 to 5.75% of the total PS-NPs. This study highlights the intricate interactions between nanoplastics and metals in soil-plant systems and emphasizes the need for further research on their combined effects and potential risks to food safety.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.