Qiangqiang Zhang , Yue Yuan , Yunxuan Hu , Richard L. Lu , Xiting Wang , Qinmei Zhong , Xian Wu , Haifang Wang , Sheng-Tao Yang
{"title":"Toxicity and decomposition activity inhibition of VO2 micro/nanoparticles to white rot fungus Phanerochaete chrysosporium","authors":"Qiangqiang Zhang , Yue Yuan , Yunxuan Hu , Richard L. Lu , Xiting Wang , Qinmei Zhong , Xian Wu , Haifang Wang , Sheng-Tao Yang","doi":"10.1016/j.impact.2024.100528","DOIUrl":null,"url":null,"abstract":"<div><p>Vanadium dioxide (VO<sub>2</sub>) is an excellent phase transition material widely used in various applications, and thus inevitably enters the environment via different routes and encounters various organisms. Nonetheless, limited information is available on the environmental hazards of VO<sub>2</sub>. In this study, we investigated the impact of two commercial VO<sub>2</sub> particles, nanosized S-VO<sub>2</sub> and micro-sized M-VO<sub>2</sub> on the white rot fungus <em>Phanerochaete chrysosporium</em>. The growth of <em>P. chrysosporium</em> is significantly affected by VO<sub>2</sub> particles, with S-VO<sub>2</sub> displaying a higher inhibitory effect on weight gain. In addition, VO<sub>2</sub> at high concentrations inhibits the formation of fungal fibrous hyphae and disrupts the integrity of fungus cells as evidenced by the cell membrane damage and the loss of cytoplasm. Notably, at 200 μg/mL, S-VO<sub>2</sub> completely alters the morphology of <em>P. chrysosporium</em>, while the M-VO<sub>2</sub> treatment does not affect the mycelium formation of <em>P. chrysosporium</em>. Additionally, VO<sub>2</sub> particles inhibit the laccase activity secreted by <em>P. chrysosporium</em>, and thus prevent the dye decoloration and sawdust decomposition by <em>P. chrysosporium</em>. The mechanism underlying this toxicity is related to the dissolution of VO<sub>2</sub> and the oxidative stress induced by VO<sub>2</sub>. Overall, our findings suggest that VO<sub>2</sub> nanoparticles pose significant environmental hazards and risks to white rot fungi.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"36 ","pages":"Article 100528"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000387","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium dioxide (VO2) is an excellent phase transition material widely used in various applications, and thus inevitably enters the environment via different routes and encounters various organisms. Nonetheless, limited information is available on the environmental hazards of VO2. In this study, we investigated the impact of two commercial VO2 particles, nanosized S-VO2 and micro-sized M-VO2 on the white rot fungus Phanerochaete chrysosporium. The growth of P. chrysosporium is significantly affected by VO2 particles, with S-VO2 displaying a higher inhibitory effect on weight gain. In addition, VO2 at high concentrations inhibits the formation of fungal fibrous hyphae and disrupts the integrity of fungus cells as evidenced by the cell membrane damage and the loss of cytoplasm. Notably, at 200 μg/mL, S-VO2 completely alters the morphology of P. chrysosporium, while the M-VO2 treatment does not affect the mycelium formation of P. chrysosporium. Additionally, VO2 particles inhibit the laccase activity secreted by P. chrysosporium, and thus prevent the dye decoloration and sawdust decomposition by P. chrysosporium. The mechanism underlying this toxicity is related to the dissolution of VO2 and the oxidative stress induced by VO2. Overall, our findings suggest that VO2 nanoparticles pose significant environmental hazards and risks to white rot fungi.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.