土壤中微塑料提取和定量的改进方法。

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Ekta Gupta , Virendra Kumar Mishra , Anju Patel , Pankaj Kumar Srivastava
{"title":"土壤中微塑料提取和定量的改进方法。","authors":"Ekta Gupta ,&nbsp;Virendra Kumar Mishra ,&nbsp;Anju Patel ,&nbsp;Pankaj Kumar Srivastava","doi":"10.1016/j.impact.2024.100525","DOIUrl":null,"url":null,"abstract":"<div><p>The ubiquitousness of microplastics (&lt;5 mm) has become a pressing environmental concern globally due to the extensive use of plastics. Microplastics have been well-studied in aquatic environments but not well-characterized in soils. Present analytical processes to quantify microplastics accurately in soil samples are quite challenging and require improved and validated analytical steps to eliminate the obscurities and biases. We aimed to develop an effective method for the extraction and quantification of microplastics from soil samples. Different ratios of low-(NaCl) and high-density solutions (ZnCl<sub>2</sub>/ NaBr) were tested to determine the most efficient combination for density-dependent separation of microplastics from soil. The combination of low- (1:6) and high-density (1:3) solutions {as weight of soil(g)/volume of density solution(ml)} accounted for 95% recovery of the spiked microplastic particles from soil samples. Likewise, different soil-to-solution ratios of H<sub>2</sub>O<sub>2</sub> were tested for the removal of soil organic matter with heating and non-heating steps. Prior removal of organic matter from soil samples achieved a clear supernatant that facilitated 99% recovery of microplastic particles. The validation of individually spiked microplastic particles of small (10-100 μm) and large scale (100-5000 μm) resulted in recovery ranging from 88 to 99%. A validated modified method with prior digestion followed by density-dependent separation was further tested using the field samples with microplastic contamination. The microplastics of different shapes, sizes, colours and polymeric compositions were reported efficiently and well characterized in the field-collected soil samples using this method.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"35 ","pages":"Article 100525"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified methodology for extraction and quantification of microplastics in soil\",\"authors\":\"Ekta Gupta ,&nbsp;Virendra Kumar Mishra ,&nbsp;Anju Patel ,&nbsp;Pankaj Kumar Srivastava\",\"doi\":\"10.1016/j.impact.2024.100525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ubiquitousness of microplastics (&lt;5 mm) has become a pressing environmental concern globally due to the extensive use of plastics. Microplastics have been well-studied in aquatic environments but not well-characterized in soils. Present analytical processes to quantify microplastics accurately in soil samples are quite challenging and require improved and validated analytical steps to eliminate the obscurities and biases. We aimed to develop an effective method for the extraction and quantification of microplastics from soil samples. Different ratios of low-(NaCl) and high-density solutions (ZnCl<sub>2</sub>/ NaBr) were tested to determine the most efficient combination for density-dependent separation of microplastics from soil. The combination of low- (1:6) and high-density (1:3) solutions {as weight of soil(g)/volume of density solution(ml)} accounted for 95% recovery of the spiked microplastic particles from soil samples. Likewise, different soil-to-solution ratios of H<sub>2</sub>O<sub>2</sub> were tested for the removal of soil organic matter with heating and non-heating steps. Prior removal of organic matter from soil samples achieved a clear supernatant that facilitated 99% recovery of microplastic particles. The validation of individually spiked microplastic particles of small (10-100 μm) and large scale (100-5000 μm) resulted in recovery ranging from 88 to 99%. A validated modified method with prior digestion followed by density-dependent separation was further tested using the field samples with microplastic contamination. The microplastics of different shapes, sizes, colours and polymeric compositions were reported efficiently and well characterized in the field-collected soil samples using this method.</p></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"35 \",\"pages\":\"Article 100525\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074824000351\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000351","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

测试了微塑料(2/ NaBr)的无处不在性,以确定根据密度从土壤中分离微塑料的最有效组合。低密度溶液(1:6)和高密度溶液(1:3)的组合{土壤重量(克)/密度溶液体积(毫升)}可从土壤样本中回收 95% 的添加微塑料颗粒。同样,我们还测试了不同土壤与 H2O2 溶液的比例在加热和非加热步骤下去除土壤有机物的效果。先去除土壤样品中的有机物,得到的上清液清澈透明,微塑料微粒的回收率高达 99%。对单独添加的小尺寸(10-100 μm)和大尺寸(100-5000 μm)微塑料颗粒进行了验证,结果回收率在 88% 至 99% 之间。使用受微塑料污染的野外样本,对经过验证的改进方法进行了进一步测试。据报道,使用这种方法可以有效地对野外采集的土壤样本中不同形状、大小、颜色和聚合物成分的微塑料进行表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A modified methodology for extraction and quantification of microplastics in soil

A modified methodology for extraction and quantification of microplastics in soil

The ubiquitousness of microplastics (<5 mm) has become a pressing environmental concern globally due to the extensive use of plastics. Microplastics have been well-studied in aquatic environments but not well-characterized in soils. Present analytical processes to quantify microplastics accurately in soil samples are quite challenging and require improved and validated analytical steps to eliminate the obscurities and biases. We aimed to develop an effective method for the extraction and quantification of microplastics from soil samples. Different ratios of low-(NaCl) and high-density solutions (ZnCl2/ NaBr) were tested to determine the most efficient combination for density-dependent separation of microplastics from soil. The combination of low- (1:6) and high-density (1:3) solutions {as weight of soil(g)/volume of density solution(ml)} accounted for 95% recovery of the spiked microplastic particles from soil samples. Likewise, different soil-to-solution ratios of H2O2 were tested for the removal of soil organic matter with heating and non-heating steps. Prior removal of organic matter from soil samples achieved a clear supernatant that facilitated 99% recovery of microplastic particles. The validation of individually spiked microplastic particles of small (10-100 μm) and large scale (100-5000 μm) resulted in recovery ranging from 88 to 99%. A validated modified method with prior digestion followed by density-dependent separation was further tested using the field samples with microplastic contamination. The microplastics of different shapes, sizes, colours and polymeric compositions were reported efficiently and well characterized in the field-collected soil samples using this method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信