{"title":"环境纳米分析的过去进展和原子质量谱仪方法的未来轨迹。","authors":"M.D. Montaño , A.J. Goodman , J.F. Ranville","doi":"10.1016/j.impact.2024.100518","DOIUrl":null,"url":null,"abstract":"<div><p>The development of engineered nanotechnology has necessitated a commensurate maturation of nanoanalysis capabilities. Building off a legacy established by electron microscopy and light-scattering, environmental nanoanalysis has now benefited from ongoing advancements in instrumentation and data analysis, which enable a deeper understanding of nanomaterial properties, behavior, and impacts. Where once environmental nanoparticles and colloids were grouped into broad ‘dissolved or particulate’ classes that are dependent on a filter size cut-off, now size distributions of submicron particles can be separated and characterized providing a more comprehensive examination of the nanoscale. Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS), directly coupled to field flow fractionation (FFF-ICP-QMS) or operated in single particle mode (spICP-MS) have spearheaded a revolution in nanoanalysis, enabling research into nanomaterial behavior in environmental and biological systems at expected release concentrations. However, the complexity of the nanoparticle population drives a need to characterize and quantify the multi-element composition of nanoparticles, which has begun to be realized through the application of time-of-flight MS (spICP-TOFMS). Despite its relative infancy, this technique has begun to make significant strides in more fully characterizing particulate systems and expanding our understanding of nanoparticle behavior. Though there is still more work to be done with regards to improving instrumentation and data processing, it is possible we are on the cusp of a new nanoanalysis revolution, capable of broadening our understanding of the size regime between dissolved and bulk particulate compartments of the environment.</p></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"35 ","pages":"Article 100518"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452074824000284/pdfft?md5=57cd8ba86644dcc716c418e7ba0b27f4&pid=1-s2.0-S2452074824000284-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Past progress in environmental nanoanalysis and a future trajectory for atomic mass-spectrometry methods\",\"authors\":\"M.D. Montaño , A.J. Goodman , J.F. Ranville\",\"doi\":\"10.1016/j.impact.2024.100518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of engineered nanotechnology has necessitated a commensurate maturation of nanoanalysis capabilities. Building off a legacy established by electron microscopy and light-scattering, environmental nanoanalysis has now benefited from ongoing advancements in instrumentation and data analysis, which enable a deeper understanding of nanomaterial properties, behavior, and impacts. Where once environmental nanoparticles and colloids were grouped into broad ‘dissolved or particulate’ classes that are dependent on a filter size cut-off, now size distributions of submicron particles can be separated and characterized providing a more comprehensive examination of the nanoscale. Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS), directly coupled to field flow fractionation (FFF-ICP-QMS) or operated in single particle mode (spICP-MS) have spearheaded a revolution in nanoanalysis, enabling research into nanomaterial behavior in environmental and biological systems at expected release concentrations. However, the complexity of the nanoparticle population drives a need to characterize and quantify the multi-element composition of nanoparticles, which has begun to be realized through the application of time-of-flight MS (spICP-TOFMS). Despite its relative infancy, this technique has begun to make significant strides in more fully characterizing particulate systems and expanding our understanding of nanoparticle behavior. Though there is still more work to be done with regards to improving instrumentation and data processing, it is possible we are on the cusp of a new nanoanalysis revolution, capable of broadening our understanding of the size regime between dissolved and bulk particulate compartments of the environment.</p></div>\",\"PeriodicalId\":18786,\"journal\":{\"name\":\"NanoImpact\",\"volume\":\"35 \",\"pages\":\"Article 100518\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452074824000284/pdfft?md5=57cd8ba86644dcc716c418e7ba0b27f4&pid=1-s2.0-S2452074824000284-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoImpact\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452074824000284\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074824000284","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Past progress in environmental nanoanalysis and a future trajectory for atomic mass-spectrometry methods
The development of engineered nanotechnology has necessitated a commensurate maturation of nanoanalysis capabilities. Building off a legacy established by electron microscopy and light-scattering, environmental nanoanalysis has now benefited from ongoing advancements in instrumentation and data analysis, which enable a deeper understanding of nanomaterial properties, behavior, and impacts. Where once environmental nanoparticles and colloids were grouped into broad ‘dissolved or particulate’ classes that are dependent on a filter size cut-off, now size distributions of submicron particles can be separated and characterized providing a more comprehensive examination of the nanoscale. Inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS), directly coupled to field flow fractionation (FFF-ICP-QMS) or operated in single particle mode (spICP-MS) have spearheaded a revolution in nanoanalysis, enabling research into nanomaterial behavior in environmental and biological systems at expected release concentrations. However, the complexity of the nanoparticle population drives a need to characterize and quantify the multi-element composition of nanoparticles, which has begun to be realized through the application of time-of-flight MS (spICP-TOFMS). Despite its relative infancy, this technique has begun to make significant strides in more fully characterizing particulate systems and expanding our understanding of nanoparticle behavior. Though there is still more work to be done with regards to improving instrumentation and data processing, it is possible we are on the cusp of a new nanoanalysis revolution, capable of broadening our understanding of the size regime between dissolved and bulk particulate compartments of the environment.
期刊介绍:
NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.