Muhammad Usman Siddiqui, Kevin Erwin, Shaihroz Khan, Rajiv Chandramohan, Connor Meinke
{"title":"An Efficient Sample Selection Methodology for a Geometallurgy Study Utilizing Statistical Analysis Techniques","authors":"Muhammad Usman Siddiqui, Kevin Erwin, Shaihroz Khan, Rajiv Chandramohan, Connor Meinke","doi":"10.1007/s42461-024-01011-4","DOIUrl":"https://doi.org/10.1007/s42461-024-01011-4","url":null,"abstract":"<p>A geometallurgy study aims to link metallurgy and geology to reduce technical risk and enhance the economic performance of a mineral-processing plant. It does so by accounting for variability in a deposit to develop cash flow models with variable throughput rates. High-quality sample selection for metallurgical test work that are representative of the deposit is an essential component of a geometallurgy study, but the large multi-dimensional dataset makes sample selection a daunting task, as classifying the dataset while respecting its heterogeneity is difficult. This paper presents a streamlined approach for sample selection, utilizing statistical analysis techniques in Python. It cuts down time to select samples from around 1200 s per drillhole to about 60 s per drillhole for data classification and from 12 h to 8 h for handpicking samples from the classified dataset, translating to cost savings. The cumulative sum method and k-means clustering method are used in the methodology to elegantly classify the data and select representative samples. The effectiveness of the methodology is demonstrated by presenting data from a pre-feasibility study of a copper-iron mine in which 40 samples were selected for flotation test work.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"14 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on Mechanical Properties of Water-Immersed Mudstone Based on Nanoindentation Tests","authors":"Junjie Zheng, Yanqi Song, Fuxin Shen, Zhixin Shao, Chuanpeng Liu, Juntao Yang","doi":"10.1007/s42461-024-01027-w","DOIUrl":"https://doi.org/10.1007/s42461-024-01027-w","url":null,"abstract":"<p>To investigate the alterations in mechanical properties and damage mechanisms of water-immersed mudstone, the mudstone from the weak interlayer of an open-pit coal mine in eastern Inner Mongolia, China, was selected as the research focus. Mudstone samples with water contents of 0, 4.12%, 7.96%, 10.17%, and 12.73% were obtained through non-destructive immersion tests. Meso-mechanical tests on mudstone with different water contents were conducted using nanoindentation technology and scanning electron microscopy. The findings reveal a noticeable weakening of meso-mechanical properties of mudstone after water immersion. The elastic modulus, hardness, and fracture toughness all show a trend of non-linear attenuation with the increase of water content. Water-immersed mudstone exhibits changes characterized by volume expansion, decreased mineral cementation ability, reduced pore size, and increased quantity. The alteration in mudstone’s internal structure directly reflects the physical reasons for the weakening of mechanical properties after water immersion.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"11 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cluber Rojas, Angelina Anani, Eduardo Cordova, Wedam Nyaaba, Edward Wellman, Sefiu O. Adewuyi
{"title":"Analysis of Raise Boring with Grouting as an Optimal Method for Ore Pass Construction in Incompetent Rock Mass—A Case Study","authors":"Cluber Rojas, Angelina Anani, Eduardo Cordova, Wedam Nyaaba, Edward Wellman, Sefiu O. Adewuyi","doi":"10.1007/s42461-024-01023-0","DOIUrl":"https://doi.org/10.1007/s42461-024-01023-0","url":null,"abstract":"<p>The construction of ore pass systems in underground mines is a high-risk activity, especially in an environment with incompetent rock mass. This study aims to investigate the optimal method for ore pass construction in incompetent rock masses. We evaluated the conventional and raise boring (RB) methods based on safety, efficiency, excavation control, and ground support for ore pass construction. We also performed a stability analysis using analytical Q-raise (<i>Q</i><sub>R</sub> method) and kinematic analysis methods for ore pass construction with a Raise Borer before and after grout injection of the rock mass. As a case study, an ore pass (diameter, 3 m; depth, 100 m) within an incompetent rock mass was considered to gain further insight. The rock mass was characterized according to the classification methods Q Barton, rock quality designation (RQD), rock mass rating (RMR), and geological strength index (GSI). The grout intensity number (GIN) method of grout injection is used. The safety factor (<1.075) obtained before injection was lower than the acceptance criteria in all sections of the rock mass. However, grout injection before Raise Borer excavation resulted in a rock mass safety factor greater than 1.5. Using RB without pre-grouting in the case study indicated that the maximum unsupported diameter (MUSD) of the ore pass was less than the required 3 m. On the contrary, an MUSD of the rock mass post-grouting was equal to or larger than 3 m at all depths.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"50 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinbo Cao, Yan Yan, Haiyu Zhang, Yanjun Li, Dianwen Liu, Anh V. Nguyen
{"title":"Flotation Mechanism of Lead-Activated Cassiterite with Ricinoleic Acid as a Collector","authors":"Qinbo Cao, Yan Yan, Haiyu Zhang, Yanjun Li, Dianwen Liu, Anh V. Nguyen","doi":"10.1007/s42461-024-01018-x","DOIUrl":"https://doi.org/10.1007/s42461-024-01018-x","url":null,"abstract":"<p>This paper investigates the flotation of cassiterite (SnO<sub>2</sub>) from ore using ricinoleic acid (RA) as a collector which is cheap and environmentally friendly. It is shown that the flotation is significantly enhanced by the activation of lead cations at pH 8. The flotation results are explained and supported by further studies to determine the changes in surface properties (hydrophobicity and surface potentials) and adsorption of RA and lead cations using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and FTIR. The results of surface (zeta) potential measurements and TOF-SIMS indicate that the amount of RA anions on the Pb-activated SnO<sub>2</sub> surface was higher than that on the natural SnO<sub>2</sub> surface. The XPS results revealed that RA anions were bound to the Sn atoms on the natural SnO<sub>2</sub> surface. In contrast, RA anions reacted with the Pb atoms instead of Sn atoms on the activated SnO<sub>2</sub> surface, improving the floatability of Pb-activated SnO<sub>2</sub>. Pb(RA)<sub>2</sub> precipitation occurred on the Pb-activated surface, and H bonds were formed between two RA anions in Pb(RA)<sub>2</sub>, which lead to a tighter assembly of collector species on the SnO<sub>2</sub> surface. The outcomes of this research shed light on the application of the cost-effective and environmentally friendly RA collector in cassiterite flotation.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"202 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vikram Sakinala, P. S. Paul, Janardhan Rao Moparthi
{"title":"Assessment of HEMM Operators’ Risk Exposure due to Whole-Body Vibration in Underground Metalliferous Mines Using Machine Learning Techniques","authors":"Vikram Sakinala, P. S. Paul, Janardhan Rao Moparthi","doi":"10.1007/s42461-024-01009-y","DOIUrl":"https://doi.org/10.1007/s42461-024-01009-y","url":null,"abstract":"<p>Whole-body vibration <b>(</b>WBV) is a substantial occupational health and safety hazard to heavy earth-moving machinery (HEMM) operators. There is a need to appraise the effect of WBV jeopardize and the factors influencing the WBV risk exposure on the HEMM operators. Seven machine learning (ML) models were tested on 81 data samples collected from seven underground metalliferous mines. The study considered nine factors which have substantial role behind the intensity of the WBV risk exposure of HEMM operators. RReleifF algorithm was used for dimensionality reduction and ranking the features. Compared to other ML techniques, ANN model was determined to be the most effective approach. The nine considered features were reduced to five features using RReleifF algorithm. The ranking of the five features selected was in order of awkward posture, the machine age, haul road condition, speed, and seat thickness based on their weights. Finally, a predictive equation was developed using the aforementioned five features. This study will help the seven underground mines authority to evaluate the WBV risk exposure effortlessly without the usage of scientific instrument and also helps in adopting immediate control measures to mitigate WBV risk exposure of HEMM operators.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"43 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aditya Moudgal, Mohammad Asadikiya, Yu Zhong, Adam C. Powell, Uday Pal
{"title":"Electrometallurgical Extraction of Silicon Using Solid Oxide Membrane—Molten Salt Electrolysis","authors":"Aditya Moudgal, Mohammad Asadikiya, Yu Zhong, Adam C. Powell, Uday Pal","doi":"10.1007/s42461-024-00957-9","DOIUrl":"https://doi.org/10.1007/s42461-024-00957-9","url":null,"abstract":"<p>This paper describes a computational and experimental approach to electrodeposition of silicon using a MgF<sub>2</sub>-CaF<sub>2</sub>-CaO-Y<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> molten salt electrolyte and a yttria-stabilized zirconia solid oxide membrane at the anode. A secondary and tertiary current density distribution model shows anodic current density between 0.5 and 1 A cm<sup>−2</sup> with a fairly even distribution along the anode surface except at the ends of the anodes. Finite element analysis of industrial cell magnetohydrodynamics (MHD) shows electrolyte flow to be 23 times slower compared to a calculated analytical model. The experiments demonstrate formation of highly pure silicon in the melt with particle sizes ranging from a few μm to clusters of 2 ~ 3 mm. Finally, the mechanism of Si formation based on a short thermodynamic analysis was discussed.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ngie Hing Wong, Zong Yang Kong, Ratanak Sambo, Chang Saar Chai, Ali Raza Khoso, Jibril Adewale Bamgbade, Jaka Sunarso
{"title":"Physicochemical Characteristics of Silicomanganese Slag as a Recycling Construction Material: An Overview","authors":"Ngie Hing Wong, Zong Yang Kong, Ratanak Sambo, Chang Saar Chai, Ali Raza Khoso, Jibril Adewale Bamgbade, Jaka Sunarso","doi":"10.1007/s42461-024-00987-3","DOIUrl":"https://doi.org/10.1007/s42461-024-00987-3","url":null,"abstract":"<p>Silicomanganese (SiMn) slag is a by-product of ferromanganese and SiMn alloy production poses significant challenges in terms of environmentally sound disposal given its substantial volume. This brief review aims to assess the physicochemical attributes of SiMn slag and explore its potential applications in construction materials recycling. To accomplish this, we systematically evaluated 20 relevant articles, categorizing them into segments covering reutilization methods, key considerations, enhancement strategies, and the recent challenges and prospects associated with SiMn slag reutilization. Our analysis encompassed SiMn slags from five countries, revealing consistent chemical compositions characterized by SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, CaO, MnO, MgO, FeO + Fe<sub>2</sub>O<sub>3</sub>, and K<sub>2</sub>O + Na<sub>2</sub>O at similar proportions. We identified two distinct types of SiMn slag, i.e., air-cooled and water-quenched, each possessing unique physical properties influencing their suitability for reutilization. SiMn slag has been successfully repurposed into various construction materials, including cement paste, mortar, concrete, alkali-activated matrices, bricks, backfill materials, Mn extracts, and binder/cement. Several critical factors must be considered when reutilizing SiMn slag in construction materials, including cooling methods, moisture content, particle size (fineness), equipment, energy requirements, and cost considerations. To enhance the reutilization process, we propose a structured approach consisting of four key steps, i.e., incoming waste assessment, pre-treatment, physical/chemical treatment, and product development. Furthermore, this review suggests several avenues for future research, including the development of industrial-scale recycling applications, exploring environmentally friendly landfilling methods for SiMn slag, and assessing the practicality and feasibility of SiMn-slag-based products in real-world construction projects.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"11 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141255241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Combined Disposal Process of Magnesium Salt Rare Earth Enrichment (MREE) and Neutralization Slag","authors":"An Guo, Xinjin Xiao, Zhaohua Ke, Liusheng Ge, Jianbo Lan, Xiaoying Qiu, Qiaofa Lan, Desheng Huang","doi":"10.1007/s42461-024-01012-3","DOIUrl":"https://doi.org/10.1007/s42461-024-01012-3","url":null,"abstract":"<p>Magnesium salt rare earth enrichment (MREE) is a crucial intermediate raw material in the deep processing of rare earth elements and material preparation, serving as a front-end raw material for the synthesis of rare earth oxides. With the current disposal process for MREE, neutralization slag with high rare earth residue is generated during further extraction of rare earth from the MREE and accumulates in huge piles. Therefore, the combined disposal process of MREE and neutralization slag was put forward. MREE was solubilized using 4 mol/L sulfuric acid to achieve an endpoint pH of 0.75, dissolving the rare earth and obtaining an acid solution. The MREE and neutralization slag were added in a mass ratio of 1:2 to the acid solution sequentially. The pH of the endpoint was controlled to 4.8~5.0 for neutralization and decontamination. This resulted in the production of rare earth sulfate liquid of similar quality to the original MREE disposal process, meeting subsequent extraction requirements. The neutralization slag underwent a water washing process, with two washes (first with 0.2 mol/L acidity water at a solid-liquid ratio of 1:2 and second with deionized water at a ratio of 1:4), resulting in water-washing slag with a rare earth content of 0.24% and a rare earth yield of 97.08%. Notably, zero wastewater discharge was realized. This innovative process effectively addressed the challenges of high rare earth residue in neutralization slag and stockpile accumulation, offering valuable theoretical and practical insights for MREE disposal.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"25 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High Pressure Grinding Roll and Magnetic Separation for Energy Saving in Grinding and Simultaneously Improving Processing Capacity: A Case Study of a Magnetite Ore","authors":"Jianwen Yu, Yaxiong An, Peng Gao, Yuexin Han","doi":"10.1007/s42461-024-01015-0","DOIUrl":"https://doi.org/10.1007/s42461-024-01015-0","url":null,"abstract":"<p>This paper presents an industrial verification test, adding a high pressure grinding roll and magnetic separation operation after the third-stage fine crushing operation to reduce the particle size of ball mill feed and improve the processing capacity of grinding operation. The optimal process parameters of high pressure grinding roll and magnetic separation were determined to be a 10 mm of roller surface spacing, a 10.5 Mpa of roller surface pressure, a 14 r/min of roller surface speed, a particle feed size to the magnetic separator of P<sub>100</sub> 3 mm, and a 3000 Oe of magnetic field intensity. Under the above optimized conditions, the iron grade of magnetic pre-enriched concentrate increased significantly from 28.27% to 36.30%, and the iron recovery was 87.59%. Meanwhile, the yield of coarse tailings was 36.16%, which significantly reduced the amount of ore entering the subsequent ball mill-magnetic separation operation. The ball mill Bond work index W<sub>ib</sub> of raw materials and the pre-enriched concentrate were 11.76 kW•h/t and 10.46 kW•h/t, respectively. The relative grindability of the pre-enriched concentrate was increased by 34%.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"17 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingxiang Fan, Na Wu, Lida Sun, Yan Jiang, Shasha He, Mengyang Huang, Kunbin Yang, Yang Cao
{"title":"New separation technology for lead and mercury from acid sludge of copper smelting using a total hydrometallurgical process","authors":"Xingxiang Fan, Na Wu, Lida Sun, Yan Jiang, Shasha He, Mengyang Huang, Kunbin Yang, Yang Cao","doi":"10.1007/s42461-024-00997-1","DOIUrl":"https://doi.org/10.1007/s42461-024-00997-1","url":null,"abstract":"<p>The separation of lead (Pb) and mercury (Hg) from copper (Cu) smelting acid sludge using the carbonization and acid-leaching total hydrometallurgical process was investigated. The effects of the excess coefficient of sodium carbonate, excess coefficient of nitric acid, conversion time, conversion temperature, dissolution time, and dissolution temperature on the separation efficiency of Pb and Hg were studied. The test results indicated that when the dosage of sodium carbonate was 2.0 times the stoichiometric ratio, the conversion time was 1.5 h, the conversion temperature was 75 ℃, and the amount of nitric acid was 1.8 times the stoichiometric ratio. Additionally, the dissolution time was 1.0 h, the dissolution temperature was 60 ℃, the ratio of liquid–solid was 5:1, and the separation efficiency of Pb and Hg was 98.72%. This study demonstrated the advantages of a short, simple, and environmentally friendly process for separating Pb and Hg from Cu smelting acid sludge, providing complete separation and introducing a new technology.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"69 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}