Ngie Hing Wong, Zong Yang Kong, Ratanak Sambo, Chang Saar Chai, Ali Raza Khoso, Jibril Adewale Bamgbade, Jaka Sunarso
{"title":"Physicochemical Characteristics of Silicomanganese Slag as a Recycling Construction Material: An Overview","authors":"Ngie Hing Wong, Zong Yang Kong, Ratanak Sambo, Chang Saar Chai, Ali Raza Khoso, Jibril Adewale Bamgbade, Jaka Sunarso","doi":"10.1007/s42461-024-00987-3","DOIUrl":null,"url":null,"abstract":"<p>Silicomanganese (SiMn) slag is a by-product of ferromanganese and SiMn alloy production poses significant challenges in terms of environmentally sound disposal given its substantial volume. This brief review aims to assess the physicochemical attributes of SiMn slag and explore its potential applications in construction materials recycling. To accomplish this, we systematically evaluated 20 relevant articles, categorizing them into segments covering reutilization methods, key considerations, enhancement strategies, and the recent challenges and prospects associated with SiMn slag reutilization. Our analysis encompassed SiMn slags from five countries, revealing consistent chemical compositions characterized by SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, CaO, MnO, MgO, FeO + Fe<sub>2</sub>O<sub>3</sub>, and K<sub>2</sub>O + Na<sub>2</sub>O at similar proportions. We identified two distinct types of SiMn slag, i.e., air-cooled and water-quenched, each possessing unique physical properties influencing their suitability for reutilization. SiMn slag has been successfully repurposed into various construction materials, including cement paste, mortar, concrete, alkali-activated matrices, bricks, backfill materials, Mn extracts, and binder/cement. Several critical factors must be considered when reutilizing SiMn slag in construction materials, including cooling methods, moisture content, particle size (fineness), equipment, energy requirements, and cost considerations. To enhance the reutilization process, we propose a structured approach consisting of four key steps, i.e., incoming waste assessment, pre-treatment, physical/chemical treatment, and product development. Furthermore, this review suggests several avenues for future research, including the development of industrial-scale recycling applications, exploring environmentally friendly landfilling methods for SiMn slag, and assessing the practicality and feasibility of SiMn-slag-based products in real-world construction projects.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"11 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00987-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Silicomanganese (SiMn) slag is a by-product of ferromanganese and SiMn alloy production poses significant challenges in terms of environmentally sound disposal given its substantial volume. This brief review aims to assess the physicochemical attributes of SiMn slag and explore its potential applications in construction materials recycling. To accomplish this, we systematically evaluated 20 relevant articles, categorizing them into segments covering reutilization methods, key considerations, enhancement strategies, and the recent challenges and prospects associated with SiMn slag reutilization. Our analysis encompassed SiMn slags from five countries, revealing consistent chemical compositions characterized by SiO2, Al2O3, CaO, MnO, MgO, FeO + Fe2O3, and K2O + Na2O at similar proportions. We identified two distinct types of SiMn slag, i.e., air-cooled and water-quenched, each possessing unique physical properties influencing their suitability for reutilization. SiMn slag has been successfully repurposed into various construction materials, including cement paste, mortar, concrete, alkali-activated matrices, bricks, backfill materials, Mn extracts, and binder/cement. Several critical factors must be considered when reutilizing SiMn slag in construction materials, including cooling methods, moisture content, particle size (fineness), equipment, energy requirements, and cost considerations. To enhance the reutilization process, we propose a structured approach consisting of four key steps, i.e., incoming waste assessment, pre-treatment, physical/chemical treatment, and product development. Furthermore, this review suggests several avenues for future research, including the development of industrial-scale recycling applications, exploring environmentally friendly landfilling methods for SiMn slag, and assessing the practicality and feasibility of SiMn-slag-based products in real-world construction projects.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.