{"title":"镁盐稀土富集(MREE)和中和渣联合处置工艺研究","authors":"An Guo, Xinjin Xiao, Zhaohua Ke, Liusheng Ge, Jianbo Lan, Xiaoying Qiu, Qiaofa Lan, Desheng Huang","doi":"10.1007/s42461-024-01012-3","DOIUrl":null,"url":null,"abstract":"<p>Magnesium salt rare earth enrichment (MREE) is a crucial intermediate raw material in the deep processing of rare earth elements and material preparation, serving as a front-end raw material for the synthesis of rare earth oxides. With the current disposal process for MREE, neutralization slag with high rare earth residue is generated during further extraction of rare earth from the MREE and accumulates in huge piles. Therefore, the combined disposal process of MREE and neutralization slag was put forward. MREE was solubilized using 4 mol/L sulfuric acid to achieve an endpoint pH of 0.75, dissolving the rare earth and obtaining an acid solution. The MREE and neutralization slag were added in a mass ratio of 1:2 to the acid solution sequentially. The pH of the endpoint was controlled to 4.8~5.0 for neutralization and decontamination. This resulted in the production of rare earth sulfate liquid of similar quality to the original MREE disposal process, meeting subsequent extraction requirements. The neutralization slag underwent a water washing process, with two washes (first with 0.2 mol/L acidity water at a solid-liquid ratio of 1:2 and second with deionized water at a ratio of 1:4), resulting in water-washing slag with a rare earth content of 0.24% and a rare earth yield of 97.08%. Notably, zero wastewater discharge was realized. This innovative process effectively addressed the challenges of high rare earth residue in neutralization slag and stockpile accumulation, offering valuable theoretical and practical insights for MREE disposal.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Combined Disposal Process of Magnesium Salt Rare Earth Enrichment (MREE) and Neutralization Slag\",\"authors\":\"An Guo, Xinjin Xiao, Zhaohua Ke, Liusheng Ge, Jianbo Lan, Xiaoying Qiu, Qiaofa Lan, Desheng Huang\",\"doi\":\"10.1007/s42461-024-01012-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnesium salt rare earth enrichment (MREE) is a crucial intermediate raw material in the deep processing of rare earth elements and material preparation, serving as a front-end raw material for the synthesis of rare earth oxides. With the current disposal process for MREE, neutralization slag with high rare earth residue is generated during further extraction of rare earth from the MREE and accumulates in huge piles. Therefore, the combined disposal process of MREE and neutralization slag was put forward. MREE was solubilized using 4 mol/L sulfuric acid to achieve an endpoint pH of 0.75, dissolving the rare earth and obtaining an acid solution. The MREE and neutralization slag were added in a mass ratio of 1:2 to the acid solution sequentially. The pH of the endpoint was controlled to 4.8~5.0 for neutralization and decontamination. This resulted in the production of rare earth sulfate liquid of similar quality to the original MREE disposal process, meeting subsequent extraction requirements. The neutralization slag underwent a water washing process, with two washes (first with 0.2 mol/L acidity water at a solid-liquid ratio of 1:2 and second with deionized water at a ratio of 1:4), resulting in water-washing slag with a rare earth content of 0.24% and a rare earth yield of 97.08%. Notably, zero wastewater discharge was realized. This innovative process effectively addressed the challenges of high rare earth residue in neutralization slag and stockpile accumulation, offering valuable theoretical and practical insights for MREE disposal.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01012-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01012-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Study on the Combined Disposal Process of Magnesium Salt Rare Earth Enrichment (MREE) and Neutralization Slag
Magnesium salt rare earth enrichment (MREE) is a crucial intermediate raw material in the deep processing of rare earth elements and material preparation, serving as a front-end raw material for the synthesis of rare earth oxides. With the current disposal process for MREE, neutralization slag with high rare earth residue is generated during further extraction of rare earth from the MREE and accumulates in huge piles. Therefore, the combined disposal process of MREE and neutralization slag was put forward. MREE was solubilized using 4 mol/L sulfuric acid to achieve an endpoint pH of 0.75, dissolving the rare earth and obtaining an acid solution. The MREE and neutralization slag were added in a mass ratio of 1:2 to the acid solution sequentially. The pH of the endpoint was controlled to 4.8~5.0 for neutralization and decontamination. This resulted in the production of rare earth sulfate liquid of similar quality to the original MREE disposal process, meeting subsequent extraction requirements. The neutralization slag underwent a water washing process, with two washes (first with 0.2 mol/L acidity water at a solid-liquid ratio of 1:2 and second with deionized water at a ratio of 1:4), resulting in water-washing slag with a rare earth content of 0.24% and a rare earth yield of 97.08%. Notably, zero wastewater discharge was realized. This innovative process effectively addressed the challenges of high rare earth residue in neutralization slag and stockpile accumulation, offering valuable theoretical and practical insights for MREE disposal.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.