Aditya Moudgal, Mohammad Asadikiya, Yu Zhong, Adam C. Powell, Uday Pal
{"title":"利用固体氧化膜-熔盐电解法提取硅的电冶技术","authors":"Aditya Moudgal, Mohammad Asadikiya, Yu Zhong, Adam C. Powell, Uday Pal","doi":"10.1007/s42461-024-00957-9","DOIUrl":null,"url":null,"abstract":"<p>This paper describes a computational and experimental approach to electrodeposition of silicon using a MgF<sub>2</sub>-CaF<sub>2</sub>-CaO-Y<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> molten salt electrolyte and a yttria-stabilized zirconia solid oxide membrane at the anode. A secondary and tertiary current density distribution model shows anodic current density between 0.5 and 1 A cm<sup>−2</sup> with a fairly even distribution along the anode surface except at the ends of the anodes. Finite element analysis of industrial cell magnetohydrodynamics (MHD) shows electrolyte flow to be 23 times slower compared to a calculated analytical model. The experiments demonstrate formation of highly pure silicon in the melt with particle sizes ranging from a few μm to clusters of 2 ~ 3 mm. Finally, the mechanism of Si formation based on a short thermodynamic analysis was discussed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrometallurgical Extraction of Silicon Using Solid Oxide Membrane—Molten Salt Electrolysis\",\"authors\":\"Aditya Moudgal, Mohammad Asadikiya, Yu Zhong, Adam C. Powell, Uday Pal\",\"doi\":\"10.1007/s42461-024-00957-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper describes a computational and experimental approach to electrodeposition of silicon using a MgF<sub>2</sub>-CaF<sub>2</sub>-CaO-Y<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> molten salt electrolyte and a yttria-stabilized zirconia solid oxide membrane at the anode. A secondary and tertiary current density distribution model shows anodic current density between 0.5 and 1 A cm<sup>−2</sup> with a fairly even distribution along the anode surface except at the ends of the anodes. Finite element analysis of industrial cell magnetohydrodynamics (MHD) shows electrolyte flow to be 23 times slower compared to a calculated analytical model. The experiments demonstrate formation of highly pure silicon in the melt with particle sizes ranging from a few μm to clusters of 2 ~ 3 mm. Finally, the mechanism of Si formation based on a short thermodynamic analysis was discussed.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-00957-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00957-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrometallurgical Extraction of Silicon Using Solid Oxide Membrane—Molten Salt Electrolysis
This paper describes a computational and experimental approach to electrodeposition of silicon using a MgF2-CaF2-CaO-Y2O3-SiO2 molten salt electrolyte and a yttria-stabilized zirconia solid oxide membrane at the anode. A secondary and tertiary current density distribution model shows anodic current density between 0.5 and 1 A cm−2 with a fairly even distribution along the anode surface except at the ends of the anodes. Finite element analysis of industrial cell magnetohydrodynamics (MHD) shows electrolyte flow to be 23 times slower compared to a calculated analytical model. The experiments demonstrate formation of highly pure silicon in the melt with particle sizes ranging from a few μm to clusters of 2 ~ 3 mm. Finally, the mechanism of Si formation based on a short thermodynamic analysis was discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.