在不稳定岩体中建造矿石通道的最佳方法--带灌浆的提升钻孔分析--案例研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cluber Rojas, Angelina Anani, Eduardo Cordova, Wedam Nyaaba, Edward Wellman, Sefiu O. Adewuyi
{"title":"在不稳定岩体中建造矿石通道的最佳方法--带灌浆的提升钻孔分析--案例研究","authors":"Cluber Rojas, Angelina Anani, Eduardo Cordova, Wedam Nyaaba, Edward Wellman, Sefiu O. Adewuyi","doi":"10.1007/s42461-024-01023-0","DOIUrl":null,"url":null,"abstract":"<p>The construction of ore pass systems in underground mines is a high-risk activity, especially in an environment with incompetent rock mass. This study aims to investigate the optimal method for ore pass construction in incompetent rock masses. We evaluated the conventional and raise boring (RB) methods based on safety, efficiency, excavation control, and ground support for ore pass construction. We also performed a stability analysis using analytical Q-raise (<i>Q</i><sub>R</sub> method) and kinematic analysis methods for ore pass construction with a Raise Borer before and after grout injection of the rock mass. As a case study, an ore pass (diameter, 3 m; depth, 100 m) within an incompetent rock mass was considered to gain further insight. The rock mass was characterized according to the classification methods Q Barton, rock quality designation (RQD), rock mass rating (RMR), and geological strength index (GSI). The grout intensity number (GIN) method of grout injection is used. The safety factor (&lt;1.075) obtained before injection was lower than the acceptance criteria in all sections of the rock mass. However, grout injection before Raise Borer excavation resulted in a rock mass safety factor greater than 1.5. Using RB without pre-grouting in the case study indicated that the maximum unsupported diameter (MUSD) of the ore pass was less than the required 3 m. On the contrary, an MUSD of the rock mass post-grouting was equal to or larger than 3 m at all depths.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Raise Boring with Grouting as an Optimal Method for Ore Pass Construction in Incompetent Rock Mass—A Case Study\",\"authors\":\"Cluber Rojas, Angelina Anani, Eduardo Cordova, Wedam Nyaaba, Edward Wellman, Sefiu O. Adewuyi\",\"doi\":\"10.1007/s42461-024-01023-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The construction of ore pass systems in underground mines is a high-risk activity, especially in an environment with incompetent rock mass. This study aims to investigate the optimal method for ore pass construction in incompetent rock masses. We evaluated the conventional and raise boring (RB) methods based on safety, efficiency, excavation control, and ground support for ore pass construction. We also performed a stability analysis using analytical Q-raise (<i>Q</i><sub>R</sub> method) and kinematic analysis methods for ore pass construction with a Raise Borer before and after grout injection of the rock mass. As a case study, an ore pass (diameter, 3 m; depth, 100 m) within an incompetent rock mass was considered to gain further insight. The rock mass was characterized according to the classification methods Q Barton, rock quality designation (RQD), rock mass rating (RMR), and geological strength index (GSI). The grout intensity number (GIN) method of grout injection is used. The safety factor (&lt;1.075) obtained before injection was lower than the acceptance criteria in all sections of the rock mass. However, grout injection before Raise Borer excavation resulted in a rock mass safety factor greater than 1.5. Using RB without pre-grouting in the case study indicated that the maximum unsupported diameter (MUSD) of the ore pass was less than the required 3 m. On the contrary, an MUSD of the rock mass post-grouting was equal to or larger than 3 m at all depths.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01023-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01023-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在地下矿井中建造矿道系统是一项高风险活动,尤其是在岩体不稳定的环境中。本研究旨在探讨在不稳定岩体中建造矿道的最佳方法。我们从安全、效率、挖掘控制和地面支撑等方面对矿石巷道施工的常规方法和提升钻孔(RB)方法进行了评估。我们还使用分析 Q-raise(QR 法)和运动学分析方法,对岩体注浆前后使用提升钻孔机施工矿石通道进行了稳定性分析。作为一项案例研究,我们考虑了在不合格岩体中的矿石通道(直径 3 米,深度 100 米),以获得更深入的了解。根据 Q Barton、岩石质量名称 (RQD)、岩体等级 (RMR) 和地质强度指数 (GSI) 等分类方法对岩体进行了表征。注浆采用注浆强度数(GIN)法。注浆前获得的安全系数(<1.075)低于岩体所有地段的验收标准。然而,在 Raise Borer 挖掘之前注入注浆,岩体安全系数大于 1.5。在案例研究中,在未进行预注浆的情况下使用 RB,矿石通道的最大无支撑直径(MUSD)小于要求的 3 米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Raise Boring with Grouting as an Optimal Method for Ore Pass Construction in Incompetent Rock Mass—A Case Study

Analysis of Raise Boring with Grouting as an Optimal Method for Ore Pass Construction in Incompetent Rock Mass—A Case Study

The construction of ore pass systems in underground mines is a high-risk activity, especially in an environment with incompetent rock mass. This study aims to investigate the optimal method for ore pass construction in incompetent rock masses. We evaluated the conventional and raise boring (RB) methods based on safety, efficiency, excavation control, and ground support for ore pass construction. We also performed a stability analysis using analytical Q-raise (QR method) and kinematic analysis methods for ore pass construction with a Raise Borer before and after grout injection of the rock mass. As a case study, an ore pass (diameter, 3 m; depth, 100 m) within an incompetent rock mass was considered to gain further insight. The rock mass was characterized according to the classification methods Q Barton, rock quality designation (RQD), rock mass rating (RMR), and geological strength index (GSI). The grout intensity number (GIN) method of grout injection is used. The safety factor (<1.075) obtained before injection was lower than the acceptance criteria in all sections of the rock mass. However, grout injection before Raise Borer excavation resulted in a rock mass safety factor greater than 1.5. Using RB without pre-grouting in the case study indicated that the maximum unsupported diameter (MUSD) of the ore pass was less than the required 3 m. On the contrary, an MUSD of the rock mass post-grouting was equal to or larger than 3 m at all depths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信