Mathematika最新文献

筛选
英文 中文
Coloring unions of nearly disjoint hypergraph cliques 几乎不相交超图团的着色联合
IF 0.8 3区 数学
Mathematika Pub Date : 2023-11-09 DOI: 10.1112/mtk.12234
Dhruv Mubayi, Jacques Verstraete
{"title":"Coloring unions of nearly disjoint hypergraph cliques","authors":"Dhruv Mubayi,&nbsp;Jacques Verstraete","doi":"10.1112/mtk.12234","DOIUrl":"10.1112/mtk.12234","url":null,"abstract":"<p>We consider the maximum chromatic number of hypergraphs consisting of cliques that have pairwise small intersections. Designs of the appropriate parameters produce optimal constructions, but these are generally known to exist only when the number of cliques is exponential in the clique size (Glock, Kühn, Lo, and Osthus, <i>Mem. Amer. Math. Soc</i>. <b>284</b> (2023) v+131 pp; Keevash, Preprint; Rödl, <i>Eur. J. Combin</i>. 6 (1985) 69–78). We construct near designs where the number of cliques is polynomial in the clique size, and show that they have large chromatic number. The case when the cliques have pairwise intersections of size at most one seems particularly challenging. Here, we give lower bounds by analyzing a random greedy hypergraph process. We also consider the related question of determining the maximum number of caps in a finite projective/affine plane and obtain nontrivial upper and lower bounds.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper bounds for the constants of Bennett's inequality and the Gale–Berlekamp switching game Bennett不等式常数的上界和Gale-Berlekamp交换对策
IF 0.8 3区 数学
Mathematika Pub Date : 2023-10-27 DOI: 10.1112/mtk.12229
Daniel Pellegrino, Anselmo Raposo Jr.
{"title":"Upper bounds for the constants of Bennett's inequality and the Gale–Berlekamp switching game","authors":"Daniel Pellegrino,&nbsp;Anselmo Raposo Jr.","doi":"10.1112/mtk.12229","DOIUrl":"10.1112/mtk.12229","url":null,"abstract":"<p>In 1977, G. Bennett proved, by means of nondeterministic methods, an inequality that plays a fundamental role in a series of optimization problems. More precisely, Bennett's inequality shows that, for <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>p</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>p</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$p_{1},p_{2} in [1,infty ]$</annotation>\u0000 </semantics></math> and all positive integers <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>n</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>n</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$n_{1},n_{2}$</annotation>\u0000 </semantics></math>, there exists a bilinear form <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mrow>\u0000 <msub>\u0000 <mi>n</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>n</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 </msub>\u0000 <mrow>\u0000 <mo>:</mo>\u0000 <mo>(</mo>\u0000 </mrow>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <msub>\u0000 <mi>n</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 </msup>\u0000 <msub>\u0000 <mrow>\u0000 <mo>,</mo>\u0000 <mo>∥</mo>\u0000 <mo>·</mo>\u0000 <mo>∥</mo>\u0000 </mrow>\u0000 <msub>\u0000 <mi>p</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 </msub>\u0000 <mrow>\u0000 <mo>)</mo>\u0000 <mo>×</mo>\u0000 <mo>(</mo>\u0000 </mrow>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <msub>\u0000 <mi>n</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </msup>\u0000 <msub>\u0000 <mrow>\u0000 <mo>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136234350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation of multiplicative functions over F q [ x ] $mathbb {F}_q[x]$ : A pretentious approach Fq[x]$mathbb上乘法函数的相关性{F}_q[x] $:装腔作势
IF 0.8 3区 数学
Mathematika Pub Date : 2023-10-26 DOI: 10.1112/mtk.12227
Pranendu Darbar, Anirban Mukhopadhyay
{"title":"Correlation of multiplicative functions over \u0000 \u0000 \u0000 \u0000 F\u0000 q\u0000 \u0000 \u0000 [\u0000 x\u0000 ]\u0000 \u0000 \u0000 $mathbb {F}_q[x]$\u0000 : A pretentious approach","authors":"Pranendu Darbar,&nbsp;Anirban Mukhopadhyay","doi":"10.1112/mtk.12227","DOIUrl":"https://doi.org/10.1112/mtk.12227","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$mathcal {M}_n$</annotation>\u0000 </semantics></math> denote the set of monic polynomials of degree <i>n</i> over a finite field <math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>q</mi>\u0000 </msub>\u0000 <annotation>$mathbb {F}_q$</annotation>\u0000 </semantics></math> of <i>q</i> elements. For multiplicative functions <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$psi _1,psi _2$</annotation>\u0000 </semantics></math>, using the recently developed “pretentious method,” we establish a “local-global” principle for correlation functions of the form\u0000\u0000 </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68181295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsic Diophantine approximation on circles and spheres 圆和球面的内禀丢番图近似
IF 0.8 3区 数学
Mathematika Pub Date : 2023-10-26 DOI: 10.1112/mtk.12228
Byungchul Cha, Dong Han Kim
{"title":"Intrinsic Diophantine approximation on circles and spheres","authors":"Byungchul Cha,&nbsp;Dong Han Kim","doi":"10.1112/mtk.12228","DOIUrl":"https://doi.org/10.1112/mtk.12228","url":null,"abstract":"<p>We study Lagrange spectra arising from intrinsic Diophantine approximation of circles and spheres. More precisely, we consider three circles embedded in <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^2$</annotation>\u0000 </semantics></math> or <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^3$</annotation>\u0000 </semantics></math> and three spheres embedded in <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^3$</annotation>\u0000 </semantics></math> or <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>4</mn>\u0000 </msup>\u0000 <annotation>$mathbb {R}^4$</annotation>\u0000 </semantics></math>. We present a unified framework to connect the Lagrange spectra of these six spaces with the spectra of <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mi>C</mi>\u0000 <annotation>$mathbb {C}$</annotation>\u0000 </semantics></math>. Thanks to prior work of Asmus L. Schmidt on the spectra of <math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math> and <math>\u0000 <semantics>\u0000 <mi>C</mi>\u0000 <annotation>$mathbb {C}$</annotation>\u0000 </semantics></math>, we obtain as a corollary, for each of the six spectra, the smallest accumulation point and the initial discrete part leading up to it completely.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68181297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the a b c $abc$ conjecture in algebraic number fields 代数数域中的a b-c$abc$猜想
IF 0.8 3区 数学
Mathematika Pub Date : 2023-10-26 DOI: 10.1112/mtk.12230
Andrew Scoones
{"title":"On the \u0000 \u0000 \u0000 a\u0000 b\u0000 c\u0000 \u0000 $abc$\u0000 conjecture in algebraic number fields","authors":"Andrew Scoones","doi":"10.1112/mtk.12230","DOIUrl":"https://doi.org/10.1112/mtk.12230","url":null,"abstract":"<p>In this paper, we prove a weak form of the <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mi>b</mi>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$abc$</annotation>\u0000 </semantics></math> conjecture generalised to algebraic number fields. Given integers satisfying <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>+</mo>\u0000 <mi>b</mi>\u0000 <mo>=</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$a+b=c$</annotation>\u0000 </semantics></math>, Stewart and Yu were able to give an exponential bound in terms of the radical over the integers (Stewart and Yu [Math. Ann. <b>291</b> (1991), 225–230], Stewart and Yu [Duke Math. J. <b>108</b> (2001), no. 1, 169–181]), whereas Győry was able to give an exponential bound in the algebraic number field case for the projective height <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mi>K</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>b</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>c</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H_{K}(a,,b,,c)$</annotation>\u0000 </semantics></math> in terms of the radical for algebraic numbers (Győry [Acta Arith. <b>133</b> (2008), 281–295]). We generalise Stewart and Yu's method to give an improvement on Győry's bound for algebraic integers over the Hilbert Class Field of the initial number field <i>K</i>. Given algebraic integers <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>b</mi>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$a,,b,,c$</annotation>\u0000 </semantics></math> in a number field <i>K</i> satisfying <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>+</mo>\u0000 <mi>b</mi>\u0000 <mo>=</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$a+b=c$</annotation>\u0000 </semantics></math>, we give an upper bound for the logarithm of the projective height <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>H</","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12230","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68181298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the number of tiles visited by a line segment on a rectangular grid 关于矩形网格上线段访问的瓦片数
IF 0.8 3区 数学
Mathematika Pub Date : 2023-09-30 DOI: 10.1112/mtk.12223
Alex Arkhipov, Luis Mendo
{"title":"On the number of tiles visited by a line segment on a rectangular grid","authors":"Alex Arkhipov,&nbsp;Luis Mendo","doi":"10.1112/mtk.12223","DOIUrl":"https://doi.org/10.1112/mtk.12223","url":null,"abstract":"<p>Consider a line segment placed on a two-dimensional grid of rectangular tiles. This paper addresses the relationship between the length of the segment and the number of tiles it visits (i.e., has intersection with). The square grid is also considered explicitly, as some of the specific problems studied are more tractable in that particular case. The segment position and orientation can be modeled as either deterministic or random. In the deterministic setting, the maximum possible number of visited tiles is characterized for a given length, and conversely, the infimum segment length needed to visit a desired number of tiles is analyzed. In the random setting, the average number of visited tiles and the probability of visiting the maximum number of tiles on a square grid are studied as a function of segment length. These questions are related to Buffon's needle problem and its extension by Laplace.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12223","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50149073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Hardy-weights for elliptic operators with mixed boundary conditions 混合边界条件下椭圆算子的最优Hardy权
IF 0.8 3区 数学
Mathematika Pub Date : 2023-09-28 DOI: 10.1112/mtk.12226
Yehuda Pinchover, Idan Versano
{"title":"Optimal Hardy-weights for elliptic operators with mixed boundary conditions","authors":"Yehuda Pinchover,&nbsp;Idan Versano","doi":"10.1112/mtk.12226","DOIUrl":"https://doi.org/10.1112/mtk.12226","url":null,"abstract":"<p>We construct families of optimal Hardy-weights for a subcritical linear second-order elliptic operator <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>P</mi>\u0000 <mo>,</mo>\u0000 <mi>B</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(P,B)$</annotation>\u0000 </semantics></math> with degenerate mixed boundary conditions. By an optimal Hardy-weight for a subcritical operator we mean a nonzero nonnegative weight function <i>W</i> such that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>P</mi>\u0000 <mo>−</mo>\u0000 <mi>W</mi>\u0000 <mo>,</mo>\u0000 <mi>B</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(P-W,B)$</annotation>\u0000 </semantics></math> is critical, and null-critical with respect to <i>W</i>. Our results rely on a recently developed criticality theory for positive solutions of the corresponding mixed boundary value problem.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12226","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50147213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of polydisc slicing 多圆盘切片的稳定性
IF 0.8 3区 数学
Mathematika Pub Date : 2023-09-27 DOI: 10.1112/mtk.12225
Nathaniel Glover, Tomasz Tkocz, Katarzyna Wyczesany
{"title":"Stability of polydisc slicing","authors":"Nathaniel Glover,&nbsp;Tomasz Tkocz,&nbsp;Katarzyna Wyczesany","doi":"10.1112/mtk.12225","DOIUrl":"https://doi.org/10.1112/mtk.12225","url":null,"abstract":"<p>We prove a dimension-free stability result for polydisc slicing due to Oleszkiewicz and Pełczyński. Intriguingly, compared to the real case, there is an additional asymptotic maximizer. In addition to Fourier-analytic bounds, we crucially rely on a self-improving feature of polydisc slicing, established via probabilistic arguments.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50145819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Two problems on the distribution of Carmichael's lambda function 关于Carmichael lambda函数分布的两个问题
IF 0.8 3区 数学
Mathematika Pub Date : 2023-09-27 DOI: 10.1112/mtk.12222
Paul Pollack
{"title":"Two problems on the distribution of Carmichael's lambda function","authors":"Paul Pollack","doi":"10.1112/mtk.12222","DOIUrl":"https://doi.org/10.1112/mtk.12222","url":null,"abstract":"<p>Let <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$lambda (n)$</annotation>\u0000 </semantics></math> denote the exponent of the multiplicative group modulo <i>n</i>. We show that when <i>q</i> is odd, each coprime residue class modulo <i>q</i> is hit equally often by <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$lambda (n)$</annotation>\u0000 </semantics></math> as <i>n</i> varies. Under the stronger assumption that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>gcd</mo>\u0000 <mo>(</mo>\u0000 <mi>q</mi>\u0000 <mo>,</mo>\u0000 <mn>6</mn>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$gcd (q,6)=1$</annotation>\u0000 </semantics></math>, we prove that equidistribution persists throughout a Siegel–Walfisz-type range of uniformity. By similar methods we show that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$lambda (n)$</annotation>\u0000 </semantics></math> obeys Benford's leading digit law with respect to natural density. Moreover, if we assume Generalized Riemann Hypothesis, then Benford's law holds for the order of <i>a</i> mod <i>n</i>, for any fixed integer <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>∉</mo>\u0000 <mo>{</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mo>±</mo>\u0000 <mn>1</mn>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation>$anotin lbrace 0,pm 1rbrace$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50145833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the distribution of modular inverses from short intervals 关于短区间模逆的分布
IF 0.8 3区 数学
Mathematika Pub Date : 2023-09-27 DOI: 10.1112/mtk.12224
Moubariz Z. Garaev, Igor E. Shparlinski
{"title":"On the distribution of modular inverses from short intervals","authors":"Moubariz Z. Garaev,&nbsp;Igor E. Shparlinski","doi":"10.1112/mtk.12224","DOIUrl":"https://doi.org/10.1112/mtk.12224","url":null,"abstract":"<p>For a prime number <i>p</i> and integer <i>x</i> with <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>gcd</mo>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>,</mo>\u0000 <mi>p</mi>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$gcd (x,p)=1$</annotation>\u0000 </semantics></math>, let <math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>x</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <annotation>$overline{x}$</annotation>\u0000 </semantics></math> denote the multiplicative inverse of <i>x</i> modulo <i>p</i>. In this paper, we are interested in the problem of distribution modulo <i>p</i> of the sequence\u0000\u0000 </p><p>For any fixed <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$A &gt; 1$</annotation>\u0000 </semantics></math> and for any sufficiently large integer <i>N</i>, there exists a prime number <i>p</i> with\u0000\u0000 </p><p>For any fixed positive <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>γ</mi>\u0000 <mo>&lt;</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$gamma &lt; 1$</annotation>\u0000 </semantics></math>, there exists a positive constant <i>c</i> such that the following holds: for any sufficiently large integer <i>N</i> there is a prime number <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>&gt;</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation>$p &gt; N$</annotation>\u0000 </semantics></math> such that\u0000\u0000 </p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50145829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信