{"title":"Hausdorff dimension of Besicovitch sets of Cantor graphs","authors":"Iqra Altaf, Marianna Csörnyei, Kornélia Héra","doi":"10.1112/mtk.12241","DOIUrl":null,"url":null,"abstract":"<p>We consider the Hausdorff dimension of planar Besicovitch sets for rectifiable sets Γ, that is, sets that contain a rotated copy of Γ in each direction. We show that for a large class of Cantor sets <i>C</i> and Cantor-graphs Γ built on <i>C</i>, the Hausdorff dimension of any Γ-Besicovitch set must be at least <math></math>, where <math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12241","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12241","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the Hausdorff dimension of planar Besicovitch sets for rectifiable sets Γ, that is, sets that contain a rotated copy of Γ in each direction. We show that for a large class of Cantor sets C and Cantor-graphs Γ built on C, the Hausdorff dimension of any Γ-Besicovitch set must be at least , where .
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.